scholarly journals Southern Hemisphere Summer Mesopause Responses to El Niño–Southern Oscillation

2016 ◽  
Vol 29 (17) ◽  
pp. 6319-6328 ◽  
Author(s):  
Tao Li ◽  
Natalia Calvo ◽  
Jia Yue ◽  
James M. Russell ◽  
Anne K. Smith ◽  
...  

Abstract In the Southern Hemisphere (SH) polar region, satellite observations reveal a significant upper-mesosphere cooling and a lower-thermosphere warming during warm ENSO events in December. An opposite pattern is observed in the tropical mesopause region. The observed upper-mesosphere cooling agrees with a climate model simulation. Analysis of the simulation suggests that enhanced planetary wave (PW) dissipation in the Northern Hemisphere (NH) high-latitude stratosphere during El Niño strengthens the Brewer–Dobson circulation and cools the equatorial stratosphere. This increases the magnitude of the SH stratosphere meridional temperature gradient and thus causes the anomalous stratospheric easterly zonal wind and early breakdown of the SH stratospheric polar vortex. The resulting perturbation to gravity wave (GW) filtering causes anomalous SH mesospheric eastward GW forcing and polar upwelling and cooling. In addition, constructive inference of ENSO and quasi-biennial oscillation (QBO) could lead to stronger stratospheric easterly zonal wind anomalies at the SH high latitudes in November and December and early breakdown of the SH stratospheric polar vortex during warm ENSO events in the easterly QBO phase (defined by the equatorial zonal wind at ~25 hPa). This would in turn cause much more SH mesospheric eastward GW forcing and much colder polar temperatures, and hence it would induce an early onset time of SH summer polar mesospheric clouds (PMCs). The opposite mechanism occurs during cold ENSO events in the westerly QBO phase. This implies that ENSO together with QBO could significantly modulate the breakdown time of SH stratospheric polar vortex and the onset time of SH PMC.

Atmosphere ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 211 ◽  
Author(s):  
Jian Rao ◽  
Rongcai Ren ◽  
Xin Xia ◽  
Chunhua Shi ◽  
Dong Guo

Using reanalysis and the sea surface temperature (SST) analysis, the combined impact of El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) on the northern winter stratosphere is investigated. The warm and weak stratospheric polar vortex response to El Niño simply appears during positive PDO, whereas the cold and strong stratospheric polar vortex response to La Niña is preferable during negative PDO in the reanalysis. Two mechanisms may account for the enhanced stratospheric response when ENSO and PDO are in phase. First, the asymmetries of the intensity and frequency between El Niño and La Niña can be identified for the two PDO phases. Second, the extratropical SST anomalies in the North Pacific may also play a role in the varying extratropical response to ENSO. The North Pacific SST anomalies related to PDO superimpose ENSO SST anomalies when they are in phase but undermine them when they are out of phase. The superimposed North Pacific SST anomalies help to increase SST meridional gradient anomalies between tropical and extratropics, as well as to lock the local height response to ENSO. Therefore, the passages for the upward propagation of waves from the troposphere is more unimpeded when positive PDO is configured with El Niño, and vice versa when negative PDO is configured with La Niña.


2020 ◽  
Author(s):  
Jian Rao ◽  
Chaim Garfinkel ◽  
Ian White ◽  
Chen Schwartz

<p>Using 17 CMIP5/6 models with a spontaneously-generated quasi-biennial oscillation (QBO)-like phenomenon, this study explores and evaluates three dynamical pathways for impacts of the QBO on the troposphere: (i) the Holtan-Tan (HT) effect on the stratospheric polar vortex and the northern annular mode (NAM), (ii) the subtropical zonal wind downward arching over the Pacific, and (iii) changes in local convection over the Maritime Continent and Indo-Pacific Ocean. More than half of the models can reproduce at least one of the three pathways, but few models can reproduce all of the three routes. Firstly, most models are able to simulate a weakened polar vortex during easterly QBO (EQBO) winters, in agreement with the observed HT effect. However, the weakened polar vortex response during EQBO winters is underestimated or not present at all in other models, and hence the QBO → vortex → tropospheric NAM/AO chain is not simulated. For the second pathway associated with the downward arching of the QBO winds, seven models incorrectly or poorly simulate the extratropical easterly anomaly center over 20–40°N in the Pacific sector during EQBO, and hence the negative relative vorticity anomalies poleward of the easterly center is not resolved in those models, leading to an underestimated or incorrectly modelled height response over North Pacific. However the other ten do capture this effect. The third pathway is only observed in the Indo-Pacific Ocean, where the strong climatological deep convection and the warm pool are situated. Nine models can simulate the convection anomalies associated with the QBO over the Maritime Continent, which is likely caused by the near-tropopause low buoyancy frequency anomalies. No robust relationship between the QBO and El Niño–Southern Oscillation (ENSO) events can be established using the ERA-Interim reanalysis, and nine models consistently confirm little modulation of the ocean basin-wide Walker circulation and ENSO events by the QBO.</p>


2021 ◽  
Author(s):  
Audrey Lecouffe ◽  
Sophie Godin-Beekmann ◽  
Andrea Pazmiño ◽  
Alain Hauchecorne

<p>The stratospheric polar vortex in the Southern Hemisphere plays an important role in the intensity of the stratospheric ozone destruction during austral spring, which started in the late 1970s. The so-called ozone hole has in turn influenced the evolution of weather patterns in the Southern Hemisphere in the last decades (WMO, 2018). The Northern Hemisphere polar vortex is less stable because of larger dynamical activity in winter. It is thus less cold and polar arctic ozone losses are less important. The seasonal and interannual evolution of the polar vortex in both hemispheres has been analyzed using meteorological fields from the European Center for Meteorology Weather Forecasts ERA-Interim reanalyses and the MIMOSA model (Modélisation Isentrope du transport Méso-échelle de l’Ozone Stratosphérique par Advection, Hauchecorne et al., 2002). This model provides high spatial resolution potential vorticity (PV) and equivalent latitude fields at several isentropic levels (675K, 550K and 475K) that are used to evaluate the temporal evolution of the polar vortex edge. The edge of the vortex is computed on isentropic surfaces from the wind and gradient of PV as a function of equivalent latitude (e.g. Nash et al, 1996; Godin et al., 2001). On an interannual scale, the signature of some typical forcings driving stratospheric natural variability such as the 11-year solar cycle, the quasi-biennial oscillation (QBO), and El Niño Southern Oscillation (ENSO) is evaluated. The study includes analysis of the onset and breakup dates of the polar vortex, which are determined from the wind field along the vortex edge. Several threshold values, such as 15.2m/s, 20m/s and 25m/s following Akiyoshi et al. (2009) are used. Results on the seasonal and interannual evolution of the intensity and position of the vortex edge, as well as the onset and breakup dates of the Southern and Northern polar vortex edge over the 1979 – 2020 period will be shown.</p><p><strong>References:</strong></p><ul><li>Akiyoshi, H., Zhou, L., Yamashita, Y., Sakamoto, K., Yoshiki, M., Nagashima, T., Takahashi, M., Kurokawa, J., Takigawa, M., and Imamura, T. A CCM simulation of the breakup of the Antarctic polar vortex in the years 1980–2004 under the CCMVal scenarios, Journal ofGeophysical Research: Atmospheres, 114, 2009.</li> <li>Godin S., V. Bergeret, S. Bekki, C. David, G. Mégie, Study of the interannual ozone loss and the permeability of the Antarctic Polar Vortex from long-term aerosol and ozone lidar measurements in Dumont d’Urville (66.4◦S, 140◦E), J. Geophys. Res., 106, 1311-1330, 2001.</li> <li>Hauchecorne, A., S. Godin, M. Marchand, B. Hesse, and C. Souprayen, Quantification of the transport of chemical constituents from the polar vortex to midlatitudes in the lower stratosphere using the high-resolution advection model MIMOSA and effective diffusivity, J. Geophys. Res., 107 (D20), 8289, doi:10.1029/2001JD000491, 2002.</li> <li>Nash, E. R., Newman, P. A., Rosenfield, J. E., and Schoeberl, M. R. (1996), An objective determination of the polar vortex using Ertel’s potential vorticity, Journal of geophysical research, VOL.101(D5), 9471- 9478</li> <li>World Meteorological Organization, Global Ozone Research and Monitoring Project – Report No. 58, 2018.</li> </ul>


2020 ◽  
Vol 33 (20) ◽  
pp. 8975-8996 ◽  
Author(s):  
Jian Rao ◽  
Chaim I. Garfinkel ◽  
Ian P. White

AbstractUsing 17 CMIP5 and CMIP6 models with a spontaneously generated quasi-biennial oscillation (QBO)-like phenomenon, this study explores and evaluates three dynamical pathways for impacts of the QBO on the troposphere: 1) the Holtan–Tan (HT) effect on the stratospheric polar vortex and the northern annular mode (NAM), 2) the subtropical zonal wind downward arching over the Pacific, and 3) changes in local convection over the Maritime Continent and Indo-Pacific Ocean. More than half of the models can reproduce at least one of the three pathways, but few models can reproduce all of the three routes. First, seven models are able to simulate a weakened polar vortex during easterly QBO (EQBO) winters, in agreement with the HT effect in the reanalysis. However, the weakened polar vortex response during EQBO winters is underestimated or not present at all in other models, and hence the chain for QBO, vortex, and tropospheric NAM/AO is not simulated. For the second pathway associated with the downward arching of the QBO winds, 10 models simulate an inconsistent extratropical easterly anomaly center over 20°–40°N in the Pacific sector during EQBO, and hence the negative relative vorticity anomalies poleward of the easterly center is not present in those models, leading to no consensus on the height response over the North Pacific between those models and the reanalysis. However, the other seven models do capture this effect. The third pathway is only observed in the Indo-Pacific Ocean, where the strong climatological deep convection and the warm pool are situated. Seven models can simulate the convection anomalies associated with the QBO over the Maritime Continent, which is likely caused by the near-tropopause low buoyancy frequency anomalies. No robust relationship between the QBO and El Niño–Southern Oscillation (ENSO) events can be established using the JRA55 reanalysis, and 10 models consistently confirm little modulation of the ocean basinwide Walker circulation and ENSO events by the QBO.


2021 ◽  
Author(s):  
Alice Portal ◽  
Paolo Ruggieri ◽  
Froila M. Palmeiro ◽  
Javier García-Serrano ◽  
Daniela I. V. Domeisen ◽  
...  

AbstractThe predictability of the Northern Hemisphere stratosphere and its underlying dynamics are investigated in five state-of-the-art seasonal prediction systems from the Copernicus Climate Change Service (C3S) multi-model database. Special attention is devoted to the connection between the stratospheric polar vortex (SPV) and lower-stratosphere wave activity (LSWA). We find that in winter (December to February) dynamical forecasts initialised on the first of November are considerably more skilful than empirical forecasts based on October anomalies. Moreover, the coupling of the SPV with mid-latitude LSWA (i.e., meridional eddy heat flux) is generally well reproduced by the forecast systems, allowing for the identification of a robust link between the predictability of wave activity above the tropopause and the SPV skill. Our results highlight the importance of November-to-February LSWA, in particular in the Eurasian sector, for forecasts of the winter stratosphere. Finally, the role of potential sources of seasonal stratospheric predictability is considered: we find that the C3S multi-model overestimates the stratospheric response to El Niño–Southern Oscillation (ENSO) and underestimates the influence of the Quasi–Biennial Oscillation (QBO).


2013 ◽  
Vol 26 (13) ◽  
pp. 4710-4724 ◽  
Author(s):  
Michael Mayer ◽  
Kevin E. Trenberth ◽  
Leopold Haimberger ◽  
John T. Fasullo

Abstract The variability of zonally resolved tropical energy budgets in association with El Niño–Southern Oscillation (ENSO) is investigated. The most recent global atmospheric reanalyses from 1979 to 2011 are employed with removal of apparent discontinuities to obtain best possible temporal homogeneity. The growing length of record allows a more robust analysis of characteristic patterns of variability with cross-correlation, composite, and EOF methods. A quadrupole anomaly pattern is found in the vertically integrated energy divergence associated with ENSO, with centers over the Indian Ocean, the Indo-Pacific warm pool, the eastern equatorial Pacific, and the Atlantic. The smooth transition, particularly of the main maxima of latent and dry static energy divergence, from the western to the eastern Pacific is found to require at least two EOFs to be adequately described. The canonical El Niño pattern (EOF-1) and a transition pattern (EOF-2; referred to as El Niño Modoki by some authors) form remarkably coherent ENSO-related anomaly structures of the tropical energy budget not only over the Pacific but throughout the tropics. As latent and dry static energy divergences show strong mutual cancellation, variability of total energy divergence is smaller and more tightly coupled to local sea surface temperature (SST) anomalies and is mainly related to the ocean heat discharge and recharge during ENSO peak phases. The complexity of the structures throughout the tropics and their evolution during ENSO events along with their interactions with the annual cycle have often not been adequately accounted for; in particular, the El Niño Modoki mode is but part of the overall evolutionary patterns.


2011 ◽  
Vol 68 (6) ◽  
pp. 1273-1289 ◽  
Author(s):  
Chaim I. Garfinkel ◽  
Dennis L. Hartmann

Abstract A dry primitive equation model is used to explain how the quasi-biennial oscillation (QBO) of the tropical stratosphere can influence the troposphere, even in the absence of tropical convection anomalies and a variable stratospheric polar vortex. QBO momentum anomalies induce a meridional circulation to maintain thermal wind balance. This circulation includes zonal wind anomalies that extend from the equatorial stratosphere into the subtropical troposphere. In the presence of extratropical eddies, the zonal wind anomalies are intensified and extend downward to the surface. The tropospheric response differs qualitatively between integrations in which the subtropical jet is strong and integrations in which the subtropical jet is weak. While fluctuation–dissipation theory provides a guide to predicting the response in some cases, significant nonlinearity in others, particularly those designed to model the midwinter subtropical jet of the North Pacific, prevents its universal application. When the extratropical circulation is made zonally asymmetric, the response to the QBO is greatest in the exit region of the subtropical jet. The dry model is able to simulate much of the Northern Hemisphere wintertime tropospheric response to the QBO observed in reanalysis datasets and in long time integrations of the Whole Atmosphere Community Climate Model (WACCM).


Sign in / Sign up

Export Citation Format

Share Document