Attribution of Extreme Events in Arctic Sea Ice Extent

2017 ◽  
Vol 30 (2) ◽  
pp. 553-571 ◽  
Author(s):  
Megan C. Kirchmeier-Young ◽  
Francis W. Zwiers ◽  
Nathan P. Gillett

Arctic sea ice extent (SIE) has decreased over recent decades, with record-setting minimum events in 2007 and again in 2012. A question of interest across many disciplines concerns the extent to which such extreme events can be attributed to anthropogenic influences. First, a detection and attribution analysis is performed for trends in SIE anomalies over the observed period. The main objective of this study is an event attribution analysis for extreme minimum events in Arctic SIE. Although focus is placed on the 2012 event, the results are generalized to extreme events of other magnitudes, including both past and potential future extremes. Several ensembles of model responses are used, including two single-model large ensembles. Using several different metrics to define the events in question, it is shown that an extreme SIE minimum of the magnitude seen in 2012 is consistent with a scenario including anthropogenic influence and is extremely unlikely in a scenario excluding anthropogenic influence. Hence, the 2012 Arctic sea ice minimum provides a counterexample to the often-quoted idea that individual extreme events cannot be attributed to human influence.

2018 ◽  
Vol 31 (19) ◽  
pp. 7771-7787 ◽  
Author(s):  
B. L. Mueller ◽  
N. P. Gillett ◽  
A. H. Monahan ◽  
F. W. Zwiers

The paper presents results from a climate change detection and attribution study on the decline of Arctic sea ice extent in September for the 1953–2012 period. For this period three independently derived observational datasets and simulations from multiple climate models are available to attribute observed changes in the sea ice extent to known climate forcings. Here we direct our attention to the combined cooling effect from other anthropogenic forcing agents (mainly aerosols), which has potentially masked a fraction of greenhouse gas–induced Arctic sea ice decline. The presented detection and attribution framework consists of a regression model, namely, regularized optimal fingerprinting, where observations are regressed onto model-simulated climate response patterns (i.e., fingerprints). We show that fingerprints from greenhouse gas, natural, and other anthropogenic forcings are detected in the three observed records of Arctic sea ice extent. Beyond that, our findings indicate that for the 1953–2012 period roughly 23% of the greenhouse gas–induced negative sea ice trend has been offset by a weak positive sea ice trend attributable to other anthropogenic forcing. We show that our detection and attribution results remain robust in the presence of emerging nonstationary internal climate variability acting upon sea ice using a perfect model experiment and data from two large ensembles of climate simulations.


2012 ◽  
Vol 7 (3) ◽  
pp. 034011 ◽  
Author(s):  
J J Day ◽  
J C Hargreaves ◽  
J D Annan ◽  
A Abe-Ouchi

2014 ◽  
Vol 8 (1) ◽  
pp. 1383-1406 ◽  
Author(s):  
P. J. Hezel ◽  
T. Fichefet ◽  
F. Massonnet

Abstract. Almost all global climate models and Earth system models that participated in the Coupled Model Intercomparison Project 5 (CMIP5) show strong declines in Arctic sea ice extent and volume under the highest forcing scenario of the Radiative Concentration Pathways (RCPs) through 2100, including a transition from perennial to seasonal ice cover. Extended RCP simulations through 2300 were completed for a~subset of models, and here we examine the time evolution of Arctic sea ice in these simulations. In RCP2.6, the summer Arctic sea ice extent increases compared to its minimum following the peak radiative forcing in 2044 in all 9 models. RCP4.5 demonstrates continued summer Arctic sea ice decline due to continued warming on longer time scales. These two scenarios imply that summer sea ice extent could begin to recover if and when radiative forcing from greenhouse gas concentrations were to decrease. In RCP8.5 the Arctic Ocean reaches annually ice-free conditions in 7 of 9 models. The ensemble of simulations completed under the extended RCPs provide insight into the global temperature increase at which sea ice disappears in the Arctic and reversibility of declines in seasonal sea ice extent.


2019 ◽  
Vol 100 (1) ◽  
pp. S43-S48 ◽  
Author(s):  
Juan C. Acosta Navarro ◽  
Pablo Ortega ◽  
Javier García-Serrano ◽  
Virginie Guemas ◽  
Etienne Tourigny ◽  
...  

2015 ◽  
Vol 112 (15) ◽  
pp. 4570-4575 ◽  
Author(s):  
Rong Zhang

Satellite observations reveal a substantial decline in September Arctic sea ice extent since 1979, which has played a leading role in the observed recent Arctic surface warming and has often been attributed, in large part, to the increase in greenhouse gases. However, the most rapid decline occurred during the recent global warming hiatus period. Previous studies are often focused on a single mechanism for changes and variations of summer Arctic sea ice extent, and many are based on short observational records. The key players for summer Arctic sea ice extent variability at multidecadal/centennial time scales and their contributions to the observed summer Arctic sea ice decline are not well understood. Here a multiple regression model is developed for the first time, to the author’s knowledge, to provide a framework to quantify the contributions of three key predictors (Atlantic/Pacific heat transport into the Arctic, and Arctic Dipole) to the internal low-frequency variability of Summer Arctic sea ice extent, using a 3,600-y-long control climate model simulation. The results suggest that changes in these key predictors could have contributed substantially to the observed summer Arctic sea ice decline. If the ocean heat transport into the Arctic were to weaken in the near future due to internal variability, there might be a hiatus in the decline of September Arctic sea ice. The modeling results also suggest that at multidecadal/centennial time scales, variations in the atmosphere heat transport across the Arctic Circle are forced by anticorrelated variations in the Atlantic heat transport into the Arctic.


2011 ◽  
Vol 38 (9-10) ◽  
pp. 2099-2113 ◽  
Author(s):  
Matthew E. Higgins ◽  
John J. Cassano

2018 ◽  
Vol 12 (12) ◽  
pp. 3747-3757 ◽  
Author(s):  
Yuanyuan Zhang ◽  
Xiao Cheng ◽  
Jiping Liu ◽  
Fengming Hui

Abstract. The Arctic sea ice extent throughout the melt season is closely associated with initial sea ice state in winter and spring. Sea ice leads are important sites of energy fluxes in the Arctic Ocean, which may play an important role in the evolution of Arctic sea ice. In this study, we examine the potential of sea ice leads as a predictor for summer Arctic sea ice extent forecast using a recently developed daily sea ice lead product retrieved from the Moderate-Resolution Imaging Spectroradiometer (MODIS). Our results show that July pan-Arctic sea ice extent can be predicted from the area of sea ice leads integrated from midwinter to late spring, with a prediction error of 0.28 million km2 that is smaller than the standard deviation of the observed interannual variability. However, the predictive skills for August and September pan-Arctic sea ice extent are very low. When the area of sea ice leads integrated in the Atlantic and central and west Siberian sector of the Arctic is used, it has a significantly strong relationship (high predictability) with both July and August sea ice extent in the Atlantic and central and west Siberian sector of the Arctic. Thus, the realistic representation of sea ice leads (e.g., the areal coverage) in numerical prediction systems might improve the skill of forecast in the Arctic region.


2015 ◽  
Vol 42 (4) ◽  
pp. 1223-1231 ◽  
Author(s):  
L. S. Jackson ◽  
J. A. Crook ◽  
A. Jarvis ◽  
D. Leedal ◽  
A. Ridgwell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document