scholarly journals The Key Role of Warm Rain Parameterization in Determining the Aerosol Indirect Effect in a Global Climate Model

2019 ◽  
Vol 32 (14) ◽  
pp. 4409-4430 ◽  
Author(s):  
Xianwen Jing ◽  
Kentaroh Suzuki ◽  
Takuro Michibata

AbstractGlobal climate models (GCMs) have been found to share the common too-frequent bias in the warm rain formation process. In this study, five different autoconversion schemes are incorporated into a single GCM, to systematically evaluate the warm rain formation processes in comparison with satellite observations and investigate their effects on the aerosol indirect effect (AIE). It is found that some schemes generate warm rain less efficiently under polluted conditions in the manner closer to satellite observations, while the others generate warm rain too frequently. Large differences in AIE are found among these schemes. It is remarkable that the schemes with more observation-like warm rain formation processes exhibit larger AIEs that far exceed the uncertainty range reported in IPCC AR5, to an extent that can cancel much of the warming trend in the past century, whereas schemes with too-frequent rain formations yield AIEs that are well bounded by the reported range. The power-law dependence of the autoconversion rate on the cloud droplet number concentration β is found to affect substantially the susceptibility of rain formation to aerosols: the more negative β is, the more difficult it is for rain to be triggered in polluted clouds, leading to larger AIE through substantial contributions from the wet scavenging feedback. The appropriate use of a droplet size threshold can mitigate the effect of a less negative β. The role of the warm rain formation process on AIE in this particular model has broad implications for others that share the too-frequent rain-formation bias.

2013 ◽  
Vol 118 (1) ◽  
pp. 170-184 ◽  
Author(s):  
Kentaroh Suzuki ◽  
Graeme L. Stephens ◽  
Matthew D. Lebsock

2015 ◽  
Vol 72 (10) ◽  
pp. 3996-4014 ◽  
Author(s):  
Kentaroh Suzuki ◽  
Graeme Stephens ◽  
Alejandro Bodas-Salcedo ◽  
Minghuai Wang ◽  
Jean-Christophe Golaz ◽  
...  

Abstract This study examines the warm rain formation process over the global ocean in global climate models. Methodologies developed to analyze CloudSat and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations are employed to investigate the cloud-to-precipitation process of warm clouds and are applied to the model results to examine how the models represent the process for warm stratiform clouds. Despite a limitation of the present study that compares the statistics for stratiform clouds in climate models with those from satellite observations, including both stratiform and (shallow) convective clouds, the statistics constructed with the methodologies are compared between the models and satellite observations to expose their similarities and differences. A problem common to some models is that they tend to produce rain at a faster rate than is observed. These model characteristics are further examined in the context of cloud microphysics parameterizations using a simplified one-dimensional model of warm rain formation that isolates key microphysical processes from full interactions with other processes in global climate models. The one-dimensional model equivalent statistics reproduce key characteristics of the global model statistics when corresponding autoconversion schemes are assumed in the one-dimensional model. The global model characteristics depicted by the statistics are then interpreted as reflecting behaviors of the autoconversion parameterizations adopted in the models. Comparisons of the one-dimensional model with satellite observations hint at improvements to the formulation of the parameterization scheme, thus offering a novel way of constraining key parameters in autoconversion schemes of global models.


Author(s):  
Hanii Takahashi ◽  
Alejandro Bodas-Salcedo ◽  
Graeme Stephens

AbstractThe latest configuration of the Hadley Centre Global Environmental Model version 3 (HadGEM3) contains significant changes in the formulation of warm rain processes and aerosols. We evaluate the impacts of these changes in the simulation of warm rain formation processes using A-Train observations. We introduce a new model evaluation tool, quartile-based Contoured Frequency by Optical Depth Diagrams (CFODDs), in order to fill in some blind spots that conventional CFODDs have. Results indicate that HadGEM3 has weak linkage between the size of particle radius and warm rain formation processes, and switching to the new warm rain microphysics scheme causes more difference in warm rain formation processes than switching to the new aerosol scheme through reducing overly produced drizzle mode in HadGEM3. Finally, we run an experiment in which we perturb the second aerosol indirect effect (AIE) to study the rainfall-aerosol interaction in HadGEM3. Since the large changes in the cloud droplet number concentration (CDNC) appear in the AIE experiment, a large impact in warm rain diagnostics is expected. However, regions with large fractional changes in CDNC show a muted change in precipitation, arguably because large-scale constraints act to reduce the impact of such a big change in CDNC. The adjustment in cloud liquid water path to the AIE perturbation produces a large negative shortwave forcing in the midlatitudes.


Author(s):  
Alisha Vandana Lakra ◽  
Md. Mojibur Rahman

Change is the nature of every  living language for better communication. These changes can be phonological, morphological, syntactical and lexical, because of various linguistic affects. The synchronic and diachronic study of language proves that it enriches the vocabulary of the language. Another reason for the enrichment of vocabulary is through morphological word formation process which are mainly inflectional, derivational, compounding and reduplication, etc. Reduplication is implicit to phonological (sounds and prosodic units) and morphological (word constituents) components. It occurs in many languages and helps in the formation of new words. The present study concentrates on the process of reduplication Kurukh and the role of reduplication  in acquiring vocabulary.


2018 ◽  
Author(s):  
Alexa D. Ross ◽  
Robert E. Holz ◽  
Gregory Quinn ◽  
Jeffrey S. Reid ◽  
Peng Xian ◽  
...  

Abstract. Satellite observations and model simulations cannot, by themselves, give full insight into the complex relationships between aerosols and clouds. This is especially the case over the greater Southeast Asia, an area that is particularly sensitive to changes in precipitation yet possesses some of the world’s largest observability and predictability challenges. We present a new collocated dataset that combines satellite observations from Aqua's Moderate-resolution Imaging Spectroradiometer (MODIS) and the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) with the Navy Aerosol Analysis and Prediction System (NAAPS). The dataset is designed with the capability to investigate aerosol-cloud relationships and provides coincident and vertically resolved cloud and aerosol observations for a ten-year period. Using model reanalysis aerosol fields from the NAAPS and coincident cloud liquid effective radius retrievals from MODIS (removing cirrus contamination using CALIOP), we investigate the first aerosol indirect effect. We find overall that as expected, aerosol loading anti-correlates with cloud effective radius, with maximum sensitivity in cumulous mediocris clouds with heights in the 3–4.5 km level. The highest susceptibility in droplet effective radius to modeled perturbations in particle concentrations were found in the more remote regions of the western Pacific Ocean and Indian Ocean. Conversely, there was much less variability in cloud droplet size near emission sources over both land and water. We hypothesize this is suggestive of a high background aerosol population already saturating the cloud condensation nuclei budget.


Eos ◽  
2021 ◽  
Vol 102 ◽  
Author(s):  
John Worden ◽  
Sassan Saatchi ◽  
Anthony Bloom

Satellite observations of carbon balance and water fluxes are changing the role of tropical forests in local and global climate.


2021 ◽  
Author(s):  
Jihu Liu ◽  
Minghuai Wang ◽  
Daniel Rosenfeld ◽  
Yannian Zhu

<p>Proper observation of global warm rain and understanding of its formation processes can significantly advance our understanding on aerosol-cloud-precipitation interactions. Previous study shows that due to smaller cloud effective radii (Re), rain from liquid clouds over land is sharply reduced compared to oceans (Mülmenstädt, 2015). However, in our study, we use A-Train satellite observations to show that there should be smaller land-sea difference on probability of precipitation (POP) of warm clouds between land and oceans. The discrepancy is probably because the algorithm bias in CloudSat precipitation flag products over land, which may mistakenly treat drizzle as no rain. We also find that if Re is smaller than 14 mm, no matter how thick the warm cloud is it can hardly produce significant precipitation (here defined as radar reflectivity factor lager than 0dBZ), which can generate dynamic feedback on the development of clouds.</p>


Sign in / Sign up

Export Citation Format

Share Document