scholarly journals The Consistency of MJO Teleconnection Patterns on Interannual Time Scales

2020 ◽  
Vol 33 (9) ◽  
pp. 3471-3486 ◽  
Author(s):  
Kai-Chih Tseng ◽  
Eric Maloney ◽  
Elizabeth A. Barnes

AbstractThe Madden–Julian oscillation (MJO) excites strong variations in extratropical geopotential heights that modulate extratropical weather, making the MJO an important predictability source on subseasonal to seasonal time scales (S2S). Previous research demonstrates a strong similarity of teleconnection patterns across MJO events for certain MJO phases (i.e., pattern consistency) and increased model ensemble agreement during these phases that is beneficial for extended numerical weather forecasts. However, the MJO’s ability to modulate extratropical weather varies greatly on interannual time scales, which brings extra uncertainty in leveraging the MJO for S2S prediction. Few studies have investigated the mechanisms responsible for variations in the consistency of MJO tropical–extratropical teleconnections on interannual time scales. This study uses reanalysis data, ensemble simulations of a linear baroclinic model, and a Rossby wave ray tracing algorithm to demonstrate that two mechanisms largely determine the interannual variability of MJO teleconnection consistency. First, the meridional shift of stationary Rossby wave ray paths indicates increases (decreases) in the MJO’s extratropical modulation during La Niña (El Niño) years. Second, a previous study proposed that the constructive interference of Rossby wave signals caused by a dipole Rossby wave source pattern across the subtropical jet during certain MJO phases produces a consistent MJO teleconnection. However, this dipole feature is less clear in both El Niño and La Niña years due to the extension and contraction of MJO convection, respectively, which would decrease the MJO’s influence in the extratropics. Hence, considering the joint influence of the basic state and MJO forcing, this study suggests a diminished potential to leverage the MJO for S2S prediction in El Niño years.

2012 ◽  
Vol 47 (3-4) ◽  
pp. 421-435 ◽  
Author(s):  
Xuezhi Bai ◽  
Jia Wang

Atmospheric teleconnection circulation patterns associated with severe and mild ice cover over the Great Lakes are investigated using the composite analysis of lake ice data and National Center of Environmental Prediction (NCEP) reanalysis data for the period 1963–2011. The teleconnection pattern associated with the severe ice cover is the combination of a negative North Atlantic Oscillation (NAO) or Arctic Oscillation (AO) and negative phase of Pacific/North America (PNA) pattern, while the pattern associated with the mild ice cover is the combination of a positive PNA (or an El Niño) and a positive phase of the NAO/AO. These two extreme ice conditions are associated with the North American ridge–trough variations. The intensified ridge–trough system produces a strong northwest-to-southeast tilted ridge and trough and increases the anomalous northwesterly wind, advecting cold, dry Arctic air to the Great Lakes. The weakened ridge–trough system produces a flattened ridge and trough, and promotes a climatological westerly wind, advecting warm, dry air from western North America to the Great Lakes. Although ice cover for all the individual lakes responds roughly linearly and symmetrically to both phases of the NAO/AO, and roughly nonlinearly and asymmetrically to El Niño and La Niña events, the overall ice cover response to individual NAO/AO or Niño3.4 index is not statistically significant. The combined NAO/AO and Niño3.4 indices can be used to reliably project severe ice cover during the simultaneous –NAO/AO and La Niña events, and mild ice cover during the simultaneous +NAO/AO and El Niño events.


2018 ◽  
Vol 31 (2) ◽  
pp. 693-725 ◽  
Author(s):  
Dimitrios Giannakis ◽  
Joanna Slawinska

The coupled atmosphere–ocean variability of the Indo-Pacific domain on seasonal to multidecadal time scales is investigated in CCSM4 and in observations through nonlinear Laplacian spectral analysis (NLSA). It is found that ENSO modes and combination modes of ENSO with the annual cycle exhibit a seasonally synchronized southward shift of equatorial surface zonal winds and thermocline adjustment consistent with terminating El Niño and La Niña events. The surface winds associated with these modes also generate teleconnections between the Pacific and Indian Oceans, leading to SST anomalies characteristic of the Indian Ocean dipole. The family of NLSA ENSO modes is used to study El Niño–La Niña asymmetries, and it is found that a group of secondary ENSO modes with more rapidly decorrelating temporal patterns contributes significantly to positively skewed SST and zonal wind statistics. Besides ENSO, fundamental and combination modes representing the tropospheric biennial oscillation (TBO) are found to be consistent with mechanisms for seasonally synchronized biennial variability of the Asian–Australian monsoon and Walker circulation. On longer time scales, a multidecadal pattern referred to as the west Pacific multidecadal mode (WPMM) is established to significantly modulate ENSO and TBO activity, with periods of negative SST anomalies in the western tropical Pacific favoring stronger ENSO and TBO variability. This behavior is attributed to the fact that cold WPMM phases feature anomalous decadal westerlies in the tropical central Pacific, as well as an anomalously flat zonal thermocline profile in the equatorial Pacific. Moreover, the WPMM is found to correlate significantly with decadal precipitation over Australia.


2004 ◽  
Vol 22 (3) ◽  
pp. 789-806 ◽  
Author(s):  
V. Brahmananda Rao ◽  
J. P. R. Fernandez ◽  
S. H. Franchito

Abstract. Characteristics of quasi-stationary (QS) waves in the Southern Hemisphere are discussed using 49 years (1950–1998) of NCEP/NCAR reanalysis data. A comparison between the stationary wave amplitudes and phases between the recent data (1979–1998) and the entire 49 years data showed that the differences are not large and the 49 years data can be used for the study. Using the 49 years of data it is found that the amplitude of QS wave 1 has two maxima in the upper atmosphere, one at 30°S and the other at 55°S. QS waves 2 and 3 have much less amplitude. Monthly variation of the amplitude of QS wave 1 shows that it is highest in October, particularly in the upper troposphere and stratosphere. To examine the QS wave propagation Plumb's methodology is used. A comparison of Eliassen-Palm fluxes for El Niño and La Niña events showed that during El Niño events there is a stronger upward and equatorward propagation of QS waves, particularly in the austral spring. Higher upward propagation indicates higher energy transport. A clear wave train can be identified at 300hPa in all the seasons except in summer. The horizontal component of wave activity flux in the El Niño composite seems to be a Rossby wave propagating along a Rossby wave guide, at first poleward until it reaches its turning latitude in the Southern Hemisphere midlatitudes, then equatorward in the vicinity of South America. The position of the center of positive anomalies in the austral spring in the El Niño years over the southeast Pacific, near South America, favors the occurrence of blocking highs in this region. This agrees with a recent numerical study by Renwick and Revell (1999). Key words. Meteorology and atmospheric dynamics (climatology; general circulation; ocean-atmosphere interactions)


2021 ◽  
Author(s):  
Bianca Mezzina ◽  
Froila M. Palmeiro ◽  
Javier García-Serrano ◽  
Ileana Bladé ◽  
Lauriane Batté ◽  
...  

AbstractThe impact of El Niño-Southern Oscillation (ENSO) on the late-winter extra-tropical stratosphere (January–March) is assessed in a multi-model framework. Three state-of-the-art atmospheric models are run with prescribed SST anomalies representative of a strong ENSO event, with symmetric patterns for El Niño and La Niña. The well-known temperature perturbation in the lower stratosphere during El Niño is captured by two models, in which the anomalous warming at polar latitudes is accompanied by a positive geopotential height anomaly that extends over the polar cap. In the third model, which shows a lack of temperature anomalies over the pole, the anomalous anticyclone is confined over Canada and does not expand to the polar cap. This anomalous center of action emerges from the large-scale tropospheric Rossby wave train forced by ENSO, and shrinking/stretching around the polar vortex is invoked to link it to the temperature response. No disagreement across models is found in the lower stratosphere for La Niña, whose teleconnection is opposite in sign but weaker. In the middle-upper stratosphere (above 50 hPa) the geopotential height anomalies project on a wavenumber-1 (WN1) pattern for both El Niño and, more weakly, La Niña, and show a westward tilt with height up to the stratopause. It is suggested that this WN1 pattern arises from the high-latitude lower-stratospheric anomalies, and that the ENSO teleconnection to the polar stratosphere can be interpreted in terms of upward propagation of the stationary Rossby wave train and quasi-geostrophic balance, instead of wave breaking.


2006 ◽  
Vol 19 (19) ◽  
pp. 4755-4771 ◽  
Author(s):  
Scott Power ◽  
Malcolm Haylock ◽  
Rob Colman ◽  
Xiangdong Wang

Abstract El Niño–Southern Oscillation (ENSO) in a century-long integration of a Bureau of Meteorology Research Centre (BMRC) coupled general circulation model (CGCM) drives rainfall and temperature changes over Australia that are generally consistent with documented observational changes: dry/hot conditions occur more frequently during El Niño years and wet/mild conditions occur more frequently during La Niña years. The relationship between ENSO [as measured by Niño-4 or the Southern Oscillation index (SOI), say] and all-Australia rainfall and temperature is found to be nonlinear in the observations and in the CGCM during June–December: a large La Niña sea surface temperature (SST) anomaly is closely linked to a large Australian response (i.e., Australia usually becomes much wetter), whereas the magnitude of an El Niño SST anomaly is a poorer guide to how dry Australia will actually become. Australia tends to dry out during El Niño events, but the degree of drying is not as tightly linked to the magnitude of the El Niño SST anomaly. Nonlinear or asymmetric teleconnections are also evident in the western United States/northern Mexico. The implications of asymmetric teleconnections for prediction services are discussed. The relationship between ENSO and Australian climate in both the model and the observations is strong in some decades, but weak in others. A series of decadal-long perturbation experiments are used to show that if these interdecadal changes are predictable, then the level of predictability is low. The model’s Interdecadal Pacific Oscillation (IPO), which represents interdecadal ENSO-like SST variability, is statistically linked to interdecadal changes in ENSO’s impact on Australia during June–December when ENSO’s impact on Australia is generally greatest. A simple stochastic model that incorporates the nonlinearity above is used to show that the IPO [or the closely related Pacific Decadal Oscillation (PDO)] can appear to modulate ENSO teleconnections even if the IPO–PDO largely reflect unpredictable random changes in, for example, the relative frequency of El Niño and La Niña events in a given interdecadal period. Note, however, that predictability in ENSO-related variability on decadal time scales might be either underestimated by the CGCM, or be too small to be detected by the modest number of perturbation experiments conducted. If there is a small amount of predictability in ENSO indices on decadal time scales, and there may be, then the nonlinearity described above provides a mechanism via which ENSO teleconnections could be modulated on decadal time scales in a partially predictable fashion.


2018 ◽  
Vol 31 (21) ◽  
pp. 8803-8818 ◽  
Author(s):  
Hyerim Kim ◽  
Myong-In Lee ◽  
Daehyun Kim ◽  
Hyun-Suk Kang ◽  
Yu-Kyung Hyun

This study examines the representation of the Madden–Julian oscillation (MJO) and its teleconnection in boreal winter in the Global Seasonal Forecast System, version 5 (GloSea5), using 20 years (1991–2010) of hindcast data. The sensitivity of the performance to the polarity of El Niño–Southern Oscillation (ENSO) is also investigated. The real-time multivariate MJO index of Wheeler and Hendon is used to assess MJO prediction skill while intraseasonal 200-hPa streamfunction anomalies are used to evaluate the MJO teleconnection. GloSea5 exhibits significant MJO prediction skill up to 25 days of forecast lead time. MJO prediction skill in GloSea5 also depends on initial MJO phases, with relatively enhanced (degraded) performance when the initial MJO phase is 2 or 3 (8 or 1) during the first 2 weeks of the hindcast period. GloSea5 depicts the observed MJO teleconnection patterns in the extratropics realistically up to 2 weeks albeit weaker than the observed. The ENSO-associated basic-state changes in the tropics and in the midlatitudes are reasonably represented in GloSea5. MJO prediction skill during the first 2 weeks of the hindcast is slightly higher in neutral and La Niña years than in El Niño years, especially in the upper-level zonal wind anomalies. Presumably because of the better representation of MJO-related tropical heating anomalies, the Northern Hemispheric MJO teleconnection patterns in neutral and La Niña years are considerably better than those in El Niño years.


2017 ◽  
Vol 74 (8) ◽  
pp. 2427-2446 ◽  
Author(s):  
Pragallva Barpanda ◽  
Tiffany Shaw

Abstract Storm tracks shift meridionally in response to forcing across a range of time scales. Here the authors formulate a moist static energy (MSE) framework for storm-track position and use it to understand storm-track shifts in response to seasonal insolation, El Niño minus La Niña conditions, and direct (increased CO2 over land) and indirect (increased sea surface temperature) effects of increased CO2. Two methods (linearized Taylor series and imposed MSE flux divergence) are developed to quantify storm-track shifts and decompose them into contributions from net energy (MSE input to the atmosphere minus atmospheric storage) and MSE flux divergence by the mean meridional circulation and stationary eddies. Net energy is not a dominant contribution across the time scales considered. The stationary eddy contribution dominates the storm-track shift in response to seasonal insolation, El Niño minus La Niña conditions, and CO2 direct effect in the Northern Hemisphere, whereas the mean meridional circulation contribution dominates the shift in response to CO2 indirect effect during northern winter and in the Southern Hemisphere during May and October. Overall, the MSE framework shows the seasonal storm-track shift in the Northern Hemisphere is connected to the stationary eddy MSE flux evolution. Furthermore, the equatorward storm-track shift during northern winter in response to El Niño minus La Niña conditions involves a different regime than the poleward shift in response to increased CO2 even though the tropical upper troposphere warms in both cases.


2017 ◽  
Vol 67 (1) ◽  
pp. 25
Author(s):  
Christine T. Y. Chung ◽  
Scott B. Power

The relationship between El Niño-Southern Oscillation (ENSO) indices and precipitation (P) in some parts of Australia has previously been shown to be non-linear on annual and seasonal time scales. Here we examine the relationship between P and the Southern Oscillation Index (SOI) at all Australian locations and in all seasons. We show that in many Australian regions, there is more-than-expected P during strong La Niña years (SOI>13), but less-than-expected drying during strong El Niño years (SOI


2007 ◽  
Vol 37 (12) ◽  
pp. 2882-2894 ◽  
Author(s):  
Jianke Li ◽  
Allan J. Clarke

Abstract Ocean Topography Experiment (TOPEX)/Poseidon/Jason-1 satellite altimeter observations for the 11-yr period from January 1993 to December 2003 show that in the South Pacific Ocean most of the interannual sea level variability in the region 5°–28°S is west of 160°W. This interannual variability is largest from about 5° to 15°S and from 155°E to 160°W, reaching a root-mean-square value of over 11 cm. Calculations show that this interannual sea level signal can be described by first and second baroclinic vertical mode Rossby waves forced by the curl of the interannual Ekman transport. This curl, which tends to be positive during El Niño and negative during La Niña, generates positive (negative) sea level anomalies during El Niño (La Niña) that increase westward in amplitude in accordance with Rossby wave dynamics. The sea level anomalies are not exactly in phase with the curl forcing because Sverdrup balance does not hold—vortex stretching also contributes to the response. East of 160°W is a large “quiet” region of low interannual sea level variability, especially south of about 15°S. This is surprising because there is no flow into the coast, so the interannual sea level amplitude of equatorial origin should be constant along the coast, resulting in a source of westward-propagating Rossby waves of considerable amplitude. The large low-variability region results because coastal sea level amplitude falls between 5° and 15°S, so the Rossby wave source south of 15°S is weak. During El Niño the sea level is higher than normal at the coast, so the southward fall in anomalous sea level implies, by geostrophy, that there is an anomalous onshore flow. This flow feeds an anomalous southward El Niño current of up to 20 cm s−1 above the 30–50-km-wide shelf edge. During La Niña the sea level is lower than normal at the coast and the flows reverse: a narrow anomalously northward shelf-edge flow feeding a broad offshore flow between 5° and 15°S. South of 16°S the coastal flow is much weaker.


2020 ◽  
Vol 148 (8) ◽  
pp. 3181-3202 ◽  
Author(s):  
T. S. Mohan ◽  
Marouane Temimi ◽  
R. S. Ajayamohan ◽  
Narendra Reddy Nelli ◽  
Ricardo Fonseca ◽  
...  

Abstract The central aim of this work is to investigate the characteristics of fog events over the United Arab Emirates (UAE) and identify the underlying physical processes responsible for fog initiation and dissipation. To achieve this, hourly meteorological measurements at eight airport stations, along with ERA5 reanalysis data (1995–2018), are utilized. The analysis indicates the dominance of radiation fog (RAD) as, on average, 70% of the observed events fall under this category. Fog in the UAE typically forms between 2000 and 0200 local time (LT) and dissipates between 0600 and 0900 LT. During a typical dense fog event recorded during 22–23 December 2017, cooling and moistening tendencies of up to 1.2 K h−1 and 0.7 g kg−1 h−1 are observed ~5–6 h before fog onset. In the vertical, a dry and warm layer above 750 hPa gradually descends from above 500 hPa to promote the development of fog. Similar conclusions are reached when analyzing composites of fog events. Further, the variability of fog occurrence associated with El Niño–Southern Oscillation (ENSO) patterns is explored. It is concluded that the El Niño (warm) and La Niña (cold) phases exhibit very different spatial characteristics with respect to surface meteorological variables. In particular, during El Niño events, the near-surface atmosphere is cooler and moister compared to La Niña events, favoring RAD fog formation over the UAE. Besides, fog events during El Niño years tend to last longer compared to La Niña years due to an earlier onset.


Sign in / Sign up

Export Citation Format

Share Document