scholarly journals Locally and Remotely Forced Subtropical AMOC Variability: A Matter of Time Scales

2020 ◽  
Vol 33 (12) ◽  
pp. 5155-5172
Author(s):  
Quentin Jamet ◽  
William K. Dewar ◽  
Nicolas Wienders ◽  
Bruno Deremble ◽  
Sally Close ◽  
...  

AbstractMechanisms driving the North Atlantic meridional overturning circulation (AMOC) variability at low frequency are of central interest for accurate climate predictions. Although the subpolar gyre region has been identified as a preferred place for generating climate time-scale signals, their southward propagation remains under consideration, complicating the interpretation of the observed time series provided by the Rapid Climate Change–Meridional Overturning Circulation and Heatflux Array–Western Boundary Time Series (RAPID–MOCHA–WBTS) program. In this study, we aim at disentangling the respective contribution of the local atmospheric forcing from signals of remote origin for the subtropical low-frequency AMOC variability. We analyze for this a set of four ensembles of a regional (20°S–55°N), eddy-resolving (1/12°) North Atlantic oceanic configuration, where surface forcing and open boundary conditions are alternatively permuted from fully varying (realistic) to yearly repeating signals. Their analysis reveals the predominance of local, atmospherically forced signal at interannual time scales (2–10 years), whereas signals imposed by the boundaries are responsible for the decadal (10–30 years) part of the spectrum. Due to this marked time-scale separation, we show that, although the intergyre region exhibits peculiarities, most of the subtropical AMOC variability can be understood as a linear superposition of these two signals. Finally, we find that the decadal-scale, boundary-forced AMOC variability has both northern and southern origins, although the former dominates over the latter, including at the site of the RAPID array (26.5°N).

2011 ◽  
Vol 24 (3) ◽  
pp. 624-640 ◽  
Author(s):  
Camille Marini ◽  
Claude Frankignoul ◽  
Juliette Mignot

Abstract The links between the atmospheric southern annular mode (SAM), the Southern Ocean, and the Atlantic meridional overturning circulation (AMOC) at interannual to multidecadal time scales are investigated in a 500-yr control integration of the L’Institut Pierre-Simon Laplace Coupled Model, version 4 (IPSL CM4) climate model. The Antarctic Circumpolar Current, as described by its transport through the Drake Passage, is well correlated with the SAM at the yearly time scale, reflecting that an intensification of the westerlies south of 45°S leads to its acceleration. Also in phase with a positive SAM, the global meridional overturning circulation is modified in the Southern Hemisphere, primarily reflecting a forced barotropic response. In the model, the AMOC and the SAM are linked at several time scales. An intensification of the AMOC lags a positive SAM by about 8 yr. This is due to a correlation between the SAM and the atmospheric circulation in the northern North Atlantic that reflects a symmetric ENSO influence on the two hemispheres, as well as an independent, delayed interhemispheric link driven by the SAM. Both effects lead to an intensification of the subpolar gyre and, by salinity advection, increased deep convection and a stronger AMOC. A slower oceanic link between the SAM and the AMOC is found at a multidecadal time scale. Salinity anomalies generated by the SAM enter the South Atlantic from the Drake Passage and, more importantly, the Indian Ocean; they propagate northward, eventually reaching the northern North Atlantic where, for a positive SAM, they decrease the vertical stratification and thus increase the AMOC.


2014 ◽  
Vol 44 (2) ◽  
pp. 517-537 ◽  
Author(s):  
Shane Elipot ◽  
Eleanor Frajka-Williams ◽  
Chris W. Hughes ◽  
Josh K. Willis

Abstract Analyses of meridional transport time series from the Rapid Climate Change–Meridional Overturning Circulation (RAPID MOC) array at 26°N and from Argo float and altimetry data at 41°N reveal that, at semiannual and longer time scales, the contribution from the western boundary dominates the variability of the North Atlantic meridional overturning circulation (MOC), defined as the transport in the upper 1000 m of the ocean. Because the variability of the western boundary contribution is associated with a geostrophic overturning, it is reflected in independent estimates of transports from gradient of ocean bottom pressure (OBP) relative to and below 1000 m on the continental slope of the western boundary at three nominal latitudes (26°, 39°, and 42.5°N). Time series of western meridional transports relative to and below 1000 m derived from the OBP gradient, or equivalently derived from the transport shear profile, exhibit approximately the same phase relationship between 26° and 39°–42.5°N as the western contribution to the geostrophic MOC time series do: the western geostrophic MOC at 41°N precedes the MOC at 26°N by approximately a quarter of an annual cycle, resulting in a zero correlation at this time scale. This study therefore demonstrates how OBP gradients on basin boundaries can be used to monitor the MOC and its meridional coherence.


2020 ◽  
Author(s):  
Quentin Jamet ◽  
William Dewar ◽  
Nicolas Wienders ◽  
Bruno Deremble ◽  
Sally Close ◽  
...  

<p>Mechanisms driving the North Atlantic Meridional Overturning Circulation (AMOC) variability at low-frequency are of central interest for accurate climate predictions. However, the origin of this variability remains under debate, complicating for instance the interpretation of the observed time series provided by the RAPID-MOCHA-WBTS program. In this study, we aim at disentangling the respective contribution of the local atmospheric forcing, the signal of remote origin and the ocean intrinsic dynamics for the subtropical low-frequency AMOC variability. We analyse for this a set of four ensembles of a regional (20<sup>o</sup>S - 55<sup>o</sup>N), eddy-resolving (1/12<sup>o</sup>) North Atlantic oceanic configuration, where surface forcing and open boundary conditions are alternatively permuted from fully varying (realistic) to yearly repeating signals.</p><p>The analysis of the four ensemble mean AMOCs reveals predominance of local, atmospherically forced signal at interannual time scales (2-10 years), while signals imposed by the boundaries imprint at decadal (10-30 years) time scales. Due to this marked time scale separation, we show that most of the subtropical AMOC forced variability can be understood as a linear superposition of these two signals. Analyzing the ensemble spread of the four ensembles, we then show that the subtropical AMOC is also characterized by an intrinsic variability, which organizes as a basin scale mode peaking at interannual time scales. This basin scale mode is found to be weakly sensitive to the surrounding forced signals, suggesting no causal relationship between the two. Its spatio-temporal pattern shares however similarities with the atmospherically forced signal, which is likely to make the attribution from a single eddy-resolving simulation, or from observations, more difficult.</p>


2015 ◽  
Vol 28 (24) ◽  
pp. 9803-9815 ◽  
Author(s):  
Richard G. Williams ◽  
Vassil Roussenov ◽  
M. Susan Lozier ◽  
Doug Smith

Abstract In the North Atlantic, there are pronounced gyre-scale changes in ocean heat content on interannual-to-decadal time scales, which are associated with changes in both sea surface temperature and thermocline thickness; the subtropics are often warm with a thick thermocline when the subpolar gyre is cool with a thin thermocline, and vice versa. This climate variability is investigated using a semidiagnostic dynamical analysis of historical temperature and salinity data from 1962 to 2011 together with idealized isopycnic model experiments. On time scales of typically 5 yr, the tendencies in upper-ocean heat content are not simply explained by the area-averaged atmospheric forcing for each gyre but instead dominated by heat convergences associated with the meridional overturning circulation. In the subtropics, the most pronounced warming events are associated with an increased influx of tropical heat driven by stronger trade winds. In the subpolar gyre, the warming and cooling events are associated with changes in western boundary density, where increasing Labrador Sea density leads to an enhanced overturning and an influx of subtropical heat. Thus, upper-ocean heat content anomalies are formed in a different manner in the subtropical and subpolar gyres, with different components of the meridional overturning circulation probably excited by the local imprint of atmospheric forcing.


2020 ◽  
Vol 33 (9) ◽  
pp. 3845-3862 ◽  
Author(s):  
Sijia Zou ◽  
M. Susan Lozier ◽  
Xiaobiao Xu

AbstractThe latitudinal structure of the Atlantic meridional overturning circulation (AMOC) variability in the North Atlantic is investigated using numerical results from three ocean circulation simulations over the past four to five decades. We show that AMOC variability south of the Labrador Sea (53°N) to 25°N can be decomposed into a latitudinally coherent component and a gyre-opposing component. The latitudinally coherent component contains both decadal and interannual variabilities. The coherent decadal AMOC variability originates in the subpolar region and is reflected by the zonal density gradient in that basin. It is further shown to be linked to persistent North Atlantic Oscillation (NAO) conditions in all three models. The interannual AMOC variability contained in the latitudinally coherent component is shown to be driven by westerlies in the transition region between the subpolar and the subtropical gyre (40°–50°N), through significant responses in Ekman transport. Finally, the gyre-opposing component principally varies on interannual time scales and responds to local wind variability related to the annual NAO. The contribution of these components to the total AMOC variability is latitude-dependent: 1) in the subpolar region, all models show that the latitudinally coherent component dominates AMOC variability on interannual to decadal time scales, with little contribution from the gyre-opposing component, and 2) in the subtropical region, the gyre-opposing component explains a majority of the interannual AMOC variability in two models, while in the other model, the contributions from the coherent and the gyre-opposing components are comparable. These results provide a quantitative decomposition of AMOC variability across latitudes and shed light on the linkage between different AMOC variability components and atmospheric forcing mechanisms.


2019 ◽  
Vol 32 (13) ◽  
pp. 3883-3898 ◽  
Author(s):  
Feili Li ◽  
M. Susan Lozier ◽  
Gokhan Danabasoglu ◽  
Naomi P. Holliday ◽  
Young-Oh Kwon ◽  
...  

Abstract While it has generally been understood that the production of Labrador Sea Water (LSW) impacts the Atlantic meridional overturning circulation (MOC), this relationship has not been explored extensively or validated against observations. To explore this relationship, a suite of global ocean–sea ice models forced by the same interannually varying atmospheric dataset, varying in resolution from non-eddy-permitting to eddy-permitting (1°–1/4°), is analyzed to investigate the local and downstream relationships between LSW formation and the MOC on interannual to decadal time scales. While all models display a strong relationship between changes in the LSW volume and the MOC in the Labrador Sea, this relationship degrades considerably downstream of the Labrador Sea. In particular, there is no consistent pattern among the models in the North Atlantic subtropical basin over interannual to decadal time scales. Furthermore, the strong response of the MOC in the Labrador Sea to LSW volume changes in that basin may be biased by the overproduction of LSW in many models compared to observations. This analysis shows that changes in LSW volume in the Labrador Sea cannot be clearly and consistently linked to a coherent MOC response across latitudes over interannual to decadal time scales in ocean hindcast simulations of the last half century. Similarly, no coherent relationships are identified between the MOC and the Labrador Sea mixed layer depth or the density of newly formed LSW across latitudes or across models over interannual to decadal time scales.


2017 ◽  
Vol 30 (6) ◽  
pp. 2029-2054 ◽  
Author(s):  
Shane Elipot ◽  
Eleanor Frajka-Williams ◽  
Chris W. Hughes ◽  
Sofia Olhede ◽  
Matthias Lankhorst

Abstract The response of the North Atlantic meridional overturning circulation (MOC) to wind stress forcing is investigated from an observational standpoint, using four time series of overturning transports below and relative to 1000 m, overlapping by 3.6 yr. These time series are derived from four mooring arrays located on the western boundary of the North Atlantic: the RAPID Western Atlantic Variability Experiment (WAVE) array (42.5°N), the Woods Hole Oceanographic Institution Line W array (39°N), RAPID–MOC/MOCHA (26.5°N), and the Meridional Overturning Variability Experiment (MOVE) array (16°N). Using modal decompositions of the analytic cross-correlation between transports and wind stress, the basin-scale wind stress is shown to significantly drive the MOC coherently at four latitudes, on the time scales available for this study. The dominant mode of covariance is interpreted as rapid barotropic oceanic adjustments to wind stress forcing, eventually forming two counterrotating Ekman overturning cells centered on the tropics and subtropical gyre. A second mode of covariance appears related to patterns of wind stress and wind stress curl associated with the North Atlantic Oscillation, spinning anomalous horizontal circulations that likely interact with topography to form overturning cells.


2007 ◽  
Vol 37 (5) ◽  
pp. 1246-1265 ◽  
Author(s):  
Joël J-M. Hirschi ◽  
Peter D. Killworth ◽  
Jeffrey R. Blundell

Abstract An eddy-permitting numerical ocean model is used to investigate the variability of the meridional overturning circulation (MOC). Both wind stress and fluctuations of the seawater density contribute to MOC changes on subannual and seasonal time scales, whereas the interannual variability mainly reflects changes in the density field. Even on subannual and seasonal time scales, a significant fraction of the total MOC variability is due to changes of the density field in the upper 1000 m of the ocean. These changes reflect perturbations of the isopycnal structure that travel westward as Rossby waves. Because of a temporally changing phase difference between the eastern and western boundaries, the Rossby waves affect the MOC by modifying the basinwide east–west density gradient. Both the numerical model used in this study and calculations based on Rossby wave theory suggest that this effect can account for an MOC variability of several Sverdrups (Sv ≡ 106 m3 s−1). These results have implications for the interpretation of variability signals inferred from hydrographic sections and might contribute to the understanding of the results obtained from the Rapid Climate Change (RAPID) monitoring array deployed at 26°N in the North Atlantic Ocean.


Science ◽  
2019 ◽  
Vol 363 (6426) ◽  
pp. 516-521 ◽  
Author(s):  
M. S. Lozier ◽  
F. Li ◽  
S. Bacon ◽  
F. Bahr ◽  
A. S. Bower ◽  
...  

To provide an observational basis for the Intergovernmental Panel on Climate Change projections of a slowing Atlantic meridional overturning circulation (MOC) in the 21st century, the Overturning in the Subpolar North Atlantic Program (OSNAP) observing system was launched in the summer of 2014. The first 21-month record reveals a highly variable overturning circulation responsible for the majority of the heat and freshwater transport across the OSNAP line. In a departure from the prevailing view that changes in deep water formation in the Labrador Sea dominate MOC variability, these results suggest that the conversion of warm, salty, shallow Atlantic waters into colder, fresher, deep waters that move southward in the Irminger and Iceland basins is largely responsible for overturning and its variability in the subpolar basin.


Sign in / Sign up

Export Citation Format

Share Document