Key Role of Diabatic Processes in Regulating Warm Water Volume Variability over ENSO Events

2020 ◽  
Vol 33 (22) ◽  
pp. 9945-9964
Author(s):  
Maurice F. Huguenin ◽  
Ryan M. Holmes ◽  
Matthew H. England

AbstractThe equatorial Pacific warm water volume (WWV), defined as the volume of water warmer than 20°C near the equator, is a key predictor for El Niño–Southern Oscillation (ENSO), and yet much about the individual processes that influence it remains unknown. In this study, we conduct idealized ENSO simulations forced with symmetric El Niño– and La Niña–associated atmospheric anomalies as well as a historical 1979–2016 hindcast simulation. We use the water mass transformation framework to examine the individual contributions of diabatic and adiabatic processes to changes in WWV. We find that in both sets of simulations, El Niño’s discharge and La Niña’s recharge periods are initiated by diabatic fluxes of volume across the 20°C isotherm associated with changes in surface forcing and vertical mixing. Changes in adiabatic horizontal volume transport above 20°C between the equator and subtropical latitudes dominate at a later stage. While surface forcing and vertical mixing deplete WWV during El Niño, surface forcing during La Niña drives a large increase partially compensated for by a decrease driven by vertical mixing. On average, the ratio of diabatic to adiabatic contributions to changes in WWV during El Niño is about 40% to 60%; during La Niña this ratio changes to 75% to 25%. The increased importance of the diabatic processes during La Niña, especially the surface heat fluxes, is linked to the shoaling of the 20°C isotherm in the eastern equatorial Pacific and is a major source of asymmetry between the two ENSO phases, even in the idealized simulations where the wind forcing and adiabatic fluxes are symmetric.

2019 ◽  
Vol 49 (6) ◽  
pp. 1541-1560 ◽  
Author(s):  
Allan J. Clarke ◽  
Xiaolin Zhang

AbstractPrevious work has shown that warm water volume (WWV), usually defined as the volume of equatorial Pacific warm water above the 20°C isotherm between 5°S and 5°N, leads El Niño. In contrast to previous discharge–recharge oscillator theory, here it is shown that anomalous zonal flow acceleration right at the equator and the movement of the equatorial warm pool are crucial to understanding WWV–El Niño dynamics and the ability of WWV to predict ENSO. Specifically, after westerly equatorial wind anomalies in a coupled ocean–atmosphere instability push the warm pool eastward during El Niño, the westerly anomalies follow the warmest water south of the equator in the Southern Hemisphere summer in December–February. With the wind forcing that causes El Niño in the eastern Pacific removed, the eastern equatorial Pacific sea level and thermocline anomalies decrease. Through long Rossby wave dynamics this decrease results in an anomalous westward equatorial flow that tends to push the warm pool westward and often results in the generation of a La Niña during March–June. The anomalously negative eastern equatorial Pacific sea level typically does not change as much during La Niña, the negative feedback is not as strong, and El Niños tend to not follow La Niñas the next year. This El Niño/La Niña asymmetry is seen in the WWV/El Niño phase diagram and decreased predictability during “La Niña–like” decades.


2020 ◽  
pp. 1-38
Author(s):  
S. Neske ◽  
S. McGregor ◽  
M. Zeller ◽  
D. Dommenget

AbstractThis study demonstrates that the generalization that strong anomalous equatorial Pacific westerly (easterly) winds during El Niño (La Niña) events displays strong adjusted warm water volume (WWV) discharges (recharges) is often incorrect. Using ocean model simulations, we categorize the oceanic adjusted responses to strong anomalous equatorial winds into two categories: (i) transitioning (consistent with the above generalization); and (ii) neutral adjusted responses (with negligible WWV re- and discharge) During the 1980-2016 period only 47% of strong anomalous equatorial winds are followed by transitioning adjusted responses, while the remaining are followed by neutral adjusted responses. Moreover, 55% (only 30%) of the strongest winds lead to transitioning adjusted responses during the pre-2000 (post-2000) period in agreement with the previously reported post-2000 decline of WWV lead time to El Niño-Southern Oscillation (ENSO) events. The prominent neutral adjusted WWV response is shown to be largely excited by anomalous wind stress forcing with a weaker curl (on average consistent with a higher ratio of off-equatorial to equatorial wind events) and weaker Rossby wave projection than the transitioning adjusted response. We also identify a prominent ENSO phase asymmetry where strong anomalous equatorial westerly winds (i.e., El Niño events) are roughly 1.6 times more likely to strongly discharge WWV than strong anomalous equatorial easterly winds (i.e., La Niña events) are to strongly recharge WWV. This ENSO phase asymmetry may be added to the list of mechanisms proposed to explain why El Niño events have a stronger tendency to be followed by La Niña events than vice versa.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Michiya Hayashi ◽  
Fei-Fei Jin ◽  
Malte F. Stuecker

Abstract The El Niño-Southern Oscillation (ENSO) results from the instability of and also modulates the strength of the tropical-Pacific cold tongue. While climate models reproduce observed ENSO amplitude relatively well, the majority still simulates its asymmetry between warm (El Niño) and cold (La Niña) phases very poorly. The causes of this major deficiency and consequences thereof are so far not well understood. Analysing both reanalyses and climate models, we here show that simulated ENSO asymmetry is largely proportional to subsurface nonlinear dynamical heating (NDH) along the equatorial Pacific thermocline. Most climate models suffer from too-weak NDH and too-weak linear dynamical ocean-atmosphere coupling. Nevertheless, a sizeable subset (about 1/3) having relatively realistic NDH shows that El Niño-likeness of the equatorial-Pacific warming pattern is linearly related to ENSO amplitude change in response to greenhouse warming. Therefore, better simulating the dynamics of ENSO asymmetry potentially reduces uncertainty in future projections.


2000 ◽  
Vol 105 (C1) ◽  
pp. 1037-1053 ◽  
Author(s):  
Gregory C. Johnson ◽  
Michael J. McPhaden ◽  
G. Dail Rowe ◽  
Kristene E. McTaggart

2016 ◽  
Vol 29 (16) ◽  
pp. 5859-5877 ◽  
Author(s):  
Han-Ching Chen ◽  
Zeng-Zhen Hu ◽  
Bohua Huang ◽  
Chung-Hsiung Sui

Abstract This study shows the sudden basinwide reversal of anomalous equatorial zonal transport above the thermocline at the peaking phase of ENSO triggers rapid termination of ENSO events. The anomalous equatorial zonal transport is controlled by the concavity of anomalous thermocline meridional structure across the equator. During the developing phase of ENSO, opposite zonal transport anomalies form in the western-central and central-eastern equatorial Pacific, respectively. Both are driven by the equatorial thermocline anomalies in response to zonal wind anomalies over the western-central equatorial ocean. At this stage, the anomalous zonal transport in the east enhances ENSO growth through zonal SST advection. In the mature phase of ENSO, off-equatorial thermocline depth anomalies become more dominant in the eastern Pacific because of the reflection of equatorial signals at the eastern boundary. As a result, the meridional concavity of the thermocline anomalies is reversed in the east. This change reverses zonal transport rapidly in the central-to-eastern equatorial Pacific, joining with the existing reversed zonal transport anomalies farther to the west, and forms a basinwide transport reversal throughout the equatorial Pacific. This basinwide transport reversal weakens the ENSO SST anomalies by reversed advection. More importantly, the reversed zonal transport reduces the existing zonal tilting of the equatorial thermocline and weakens its feedback to wind anomalies effectively. This basinwide reversal is built in at the peak phase of ENSO as an oceanic control on the evolution of both El Niño and La Niña events. The reversed zonal transport anomaly after the mature phase weakens El Niño in the eastern Pacific more efficiently than it weakens La Niña.


2011 ◽  
Vol 8 (3) ◽  
pp. 539-550 ◽  
Author(s):  
I. Masotti ◽  
C. Moulin ◽  
S. Alvain ◽  
L. Bopp ◽  
A. Tagliabue ◽  
...  

Abstract. The El Niño Southern Oscillation (ENSO) drives important changes in the marine productivity of the Equatorial Pacific, in particular during major El Niño/La Niña transitions. Changes in environmental conditions associated with these climatic events also likely impact phytoplankton composition. In this work, the distribution of four major phytoplankton groups (nanoeucaryotes, Prochlorococcus, Synechococcus, and diatoms) was examined between 1996 and 2007 by applying the PHYSAT algorithm to the ocean color data archive from the Ocean Color and Temperature Sensor (OCTS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS). Coincident with the decrease in chlorophyll concentrations, a large-scale shift in the phytoplankton composition of the Equatorial Pacific, that was characterized by a decrease in Synechococcus and an increase in nanoeucaryote dominance, was observed during the early stages of both the strong El Niño of 1997 and the moderate El Niño of 2006. A significant increase in diatoms dominance was observed in the Equatorial Pacific during the 1998 La Niña and was associated with elevated marine productivity. An analysis of the environmental variables using a coupled physical-biogeochemical model (NEMO-PISCES) suggests that the Synechococcus dominance decrease during the two El Niño events was associated with an abrupt decline in nutrient availability (−0.9 to −2.5 μM NO3 month−1). Alternatively, increased nutrient availability (3 μM NO3 month−1) during the 1998 La Niña resulted in Equatorial Pacific dominance diatom increase. Despite these phytoplankton community shifts, the mean composition is restored after a few months, which suggests resilience in community structure.


1992 ◽  
Vol 80 ◽  
pp. 109-124 ◽  
Author(s):  
CA Ribic ◽  
DG Ainley ◽  
LB Spear
Keyword(s):  
El Niño ◽  
El Nino ◽  
La Niña ◽  

Sign in / Sign up

Export Citation Format

Share Document