equatorial thermocline
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 9)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
Vol 126 (5) ◽  
Author(s):  
K. J. Richards ◽  
A. Natarov ◽  
G. S. Carter

2021 ◽  
pp. 1-59
Author(s):  
Caihong Wen ◽  
Arun Kumar ◽  
Michelle L’ Heureux ◽  
Yan Xue ◽  
Emily Becker

AbstractThe relationship between the Warm Water Volume (WWV) ENSO precursor and ENSO SST weakened substantially after ~2000, coinciding with a degradation in dynamical model ENSO prediction skill. It is important to understand the drivers of the equatorial thermocline temperature variations and their linkage to ENSO onsets. In this study, a set of ocean reanalyses is employed to assess factors responsible for the variation of the equatorial Pacific Ocean thermocline during 1982-2019. Off-equatorial thermocline temperature anomalies carried equatorward by the mean meridional currents associated with Pacific Tropical Cells are shown to play an important role in modulating the central equatorial thermocline variations, which is rarely discussed in the literature. Further, ENSO events are delineated into two groups based on precursor mechanisms: the western equatorial type (WEP) ENSO, when the central equatorial thermocline is mainly influenced by the zonal propagation of anomalies from the western Pacific, and the off-equatorial central Pacific (OCP) ENSO, when off-equatorial central thermocline anomalies play the primary role. WWV is found to precede all WEP ENSO by 6-9 months, while the correlation is substantially lower for OCP ENSO events. In contrast, the central tropical Pacific (CTP) precursor, which includes off-equatorial thermocline signals, has a very robust lead correlation with the OCP ENSO. Most OCP ENSO events are found to follow the same ENSO conditions, and the number of OCP ENSO increases substantially since the 21st century. These results highlight the importance of monitoring off-equatorial subsurface preconditions for ENSO prediction and to understand multi-year ENSO.


2020 ◽  
Author(s):  
Kelvin J Richards ◽  
Andrei Natarov ◽  
Glenn S. Carter

2020 ◽  
Author(s):  
Heather L. Ford ◽  
Natalie Burls ◽  
Deepak Chandan ◽  
Jonathan LaRiviere ◽  
Alexey Fedorov ◽  
...  

<p>The tropical Pacific thermocline structure is critical to tropical sea surface temperatures (SSTs) and variability. During the mid-Pliocene warm period (~3 Ma), the zonal SST gradient was reduced due to relatively warm SST in the Eastern Equatorial Pacific; we call this mean state “El Padre.” How did the equatorial thermocline contribute to this reduced zonal SST gradient? Here we summarize published Mg/Ca (surface and subsurface dwelling foraminifera) and alkenone records and generate new SST estimates from Mg/Ca and alkenones. The subsurface dwelling <em>Globorotalia tumida</em> Mg/Ca-based temperature records from the eastern and western equatorial Pacific show mid-Pliocene warm period subsurface temperatures warmer than today; El Padre included a basin-wide thermocline that was relatively warm, deep, and weakly tilted. We compare the published and newly generated SST and subsurface temperature records to the Pliocene Modeling Intercomparison Project (PlioMIP1) and show that few models capture the magnitude and spatial pattern suggested by the temperature records. Those models that do corroborate the temperature records have warm subsurface temperatures in the Eastern Equatorial Pacific that dynamically link to warm SSTs in the cold tongue. This highlights the need to accurately model thermocline dynamics and mid-latitude conditions, where equatorial thermocline waters originate, in order to gain an understanding of the underlying processes that explain the mid-Pliocene warm period.</p>


2020 ◽  
Vol 117 (13) ◽  
pp. 7044-7051
Author(s):  
Zhimin Jian ◽  
Yue Wang ◽  
Haowen Dang ◽  
David W. Lea ◽  
Zhengyu Liu ◽  
...  

The El Niño−Southern Oscillation (ENSO), which is tightly coupled to the equatorial thermocline in the Pacific, is the dominant source of interannual climate variability, but its long-term evolution in response to climate change remains highly uncertain. This study uses Mg/Ca in planktonic foraminiferal shells to reconstruct sea surface and thermocline water temperatures (SST and TWT) for the past 142 ky in a western equatorial Pacific (WEP) core MD01-2386. Unlike the dominant 100-ky glacial−interglacial cycle recorded by SST and δ18O, which echoes the pattern seen in other WEP sites, the upper ocean thermal gradient shows a clear half-precessional (9.4 ky or 12.7 ky) cycle as indicated by the reconstructed and simulated temperature (ΔT) and δ18O differences between the surface and thermocline waters. This phenomenon is attributed to the interplay of subtropical-to-tropical thermocline anomalies forced by the antiphased meridional insolation gradients in the two hemispheres at the precessional band. In particular, the TWT shows greater variability than SST, and dominates the ΔT changes which couple with the west−east SST difference in the equatorial Pacific at the half-precessional band, implying a decisive role of the tropical thermocline in orbital-scale climate change.


2019 ◽  
Vol 32 (23) ◽  
pp. 8069-8085
Author(s):  
Tomoki Iwakiri ◽  
Masahiro Watanabe

Abstract Paleo proxy records have suggested that El Niño–Southern Oscillation (ENSO) variability during the mid-Holocene [8200 to 4200 years ago (8.2–4.2 ka)] was weaker than during the instrumental periods, but the mechanisms remain unclear. We examined processes of ENSO suppression using a coupled general circulation model (CGCM) that simulates ENSO amplitude and skewness under the present climate reasonably well. Two long simulations were performed: one using the preindustrial condition (CTRL) and the other using the 8-ka insolation having a greater seasonal cycle (MH8K). Consistent with proxy records and previous modeling studies, the ENSO amplitude weakened by 20% in MH8K compared to CTRL, mainly because of reduced thermocline feedback during the mature and decay phases. The weak thermocline feedback, likely a result of the loose equatorial thermocline in the mid-Holocene, suppresses the occurrence of extreme El Niño events and consequently explains the reduction in both ENSO amplitude and asymmetry. In MH8K, strengthened trade winds over the western-central Pacific Ocean act to cool the surface via evaporation while warmer water in the southern subtropical Pacific is transported beneath the equatorial thermocline, both contributing to diffuse the thermocline. Multimodel simulations for the mid-Holocene showed mean state changes and ENSO weakening similar to MH8K, but most models did not show reduced ENSO skewness, probably because of the failure in reproducing extreme El Niño events under the present climate.


2019 ◽  
Vol 11 (18) ◽  
pp. 5038
Author(s):  
Li-Chiao Wang ◽  
Jia-Yuh Yu

A recent work proposed a simple theory based on the framework of Zebiak–Cane (ZC) ocean model, and successfully characterized the equatorial Atlantic upwelling annual cycle as a combination of the local wind-driven Ekman upwelling and nonlocal wind-driven wave upwelling. In the present work, utilizing the same simple framework, we examined the fidelity of the upwelling Pacific annual cycle using observations and simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5). We demonstrated that the theoretical upwelling annual cycles generally match the original upwelling annual cycles in the equatorial Pacific in both observations and CMIP5 simulations. Therefore, this simple formulation can be used to represent the upwelling annual cycle in the equatorial Pacific. Observationally, the equatorial Pacific upwelling annual cycle is dominated by the local wind-driven Ekman upwelling, while the remote wave upwelling is confined near the eastern boundary with little contribution. In CMIP5 simulations, though the theoretical-reconstructed upwelling well-reproduces the original upwelling, the contribution is totally different compared to the observation. The wave upwelling serves as the main contributor instead of the Ekman upwelling. We further demonstrated that such discrepancy is attributable to the bias of the central to eastern equatorial thermocline depth patterns. This amplified, westward-shift wave upwelling weakened the impacts of the Ekman upwelling, and contributes to the entire Pacific equatorial upwelling annual cycle substantially. This implies that a realistic simulation of the equatorial Pacific upwelling annual cycle in models is very sensitive to the careful simulation of the equatorial thermocline depth annual evolutions.


2019 ◽  
Vol 32 (5) ◽  
pp. 1641-1660 ◽  
Author(s):  
Giorgio Graffino ◽  
Riccardo Farneti ◽  
Fred Kucharski ◽  
Franco Molteni

Abstract The importance of subtropical and extratropical zonal wind stress anomalies on Pacific subtropical cell (STC) strength is assessed through several idealized and realistic numerical experiments with a global ocean model. Different zonal wind stress anomalies are employed, and their intensity is strengthened or weakened with respect to the climatological value throughout a suite of simulations. Subtropical strengthened (weakened) zonal wind stress anomalies result in increased (decreased) STC meridional mass and energy transport. When upwelling of subsurface water into the tropics is intensified (reduced), a distinct cold (warm) anomaly appears in the equatorial thermocline and up to the surface, resulting in significant tropical sea surface temperature (SST) anomalies. The use of realistic wind stress anomalies also suggests a potential impact of midlatitude atmospheric modes of variability on tropical climate through STC dynamics. The remotely driven response is compared with a set of simulations where an equatorial zonal wind stress anomaly is imposed. A dynamically distinct response is achieved, whereby the equatorial thermocline adjusts to the wind stress anomaly, resulting in significant equatorial SST anomalies as in the remotely forced simulations but with no role for STCs. Significant anomalies in Indonesian Throughflow transport are generated only when equatorial wind stress anomalies are applied, leading to remarkable heat content anomalies in the Indian Ocean. Equatorial wind stress anomalies do not involve modifications of STC transport but could set up the appropriate initial conditions for a tropical–extratropical teleconnection involving Hadley cells, exciting an STC anomalous transport, which ultimately feeds back on the tropics.


2017 ◽  
Vol 32 (7) ◽  
pp. 729-743 ◽  
Author(s):  
Hiroki Matsui ◽  
Hiroshi Nishi ◽  
Azumi Kuroyanagi ◽  
Hiroki Hayashi ◽  
Minoru Ikehara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document