diabatic processes
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 32)

H-INDEX

18
(FIVE YEARS 3)

2021 ◽  
Vol 2 (4) ◽  
pp. 1073-1091
Author(s):  
Roman Attinger ◽  
Elisa Spreitzer ◽  
Maxi Boettcher ◽  
Heini Wernli ◽  
Hanna Joos

Abstract. Diabatic processes significantly affect the development and structure of extratropical cyclones. Previous studies quantified the dynamical relevance of selected diabatic processes by studying their influence on potential vorticity (PV) in individual cyclones. However, a more general assessment of the relevance of all PV-modifying processes in a larger ensemble of cyclones is currently missing. Based on a series of twelve 35 d model simulations using the Integrated Forecasting System of the European Centre for Medium-Range Weather Forecasts, this study systematically quantifies the diabatic modification of positive and negative low-level PV anomalies along the cold front, warm front, and in the center of 288 rapidly intensifying extratropical cyclones. Diabatic PV modification is assessed by accumulating PV tendencies associated with each parametrized process along 15 h backward trajectories. The primary processes that modify PV typically remain temporally consistent during cyclone intensification. However, a pronounced case-to-case variability is found when comparing the most important processes across individual cyclones. Along the cold front, PV is primarily generated by condensation in half of the investigated cyclones in the cold season (October to March). For most of the remaining cyclones, convection or long-wave radiative cooling is the most important process. Similar results are found in the warm season (April to September); however, the fraction of cyclones with PV generation by convection as the most important process is reduced. Negative PV west of the cold front is primarily produced by turbulent mixing of momentum, long-wave radiative heating, or turbulent mixing of temperature. The positive PV anomaly at the warm front is most often primarily generated by condensation in the cold season and by turbulent mixing of momentum in the warm season. Convection is the most important process only in a few cyclones. Negative PV along the warm front is primarily produced by long-wave radiative heating, turbulent mixing of temperature, or melting of snow in the cold season. Turbulent mixing of temperature becomes the primary process in the warm season, followed by melting of snow and turbulent mixing of momentum. The positive PV anomaly in the cyclone center is primarily produced by condensation in most cyclones, with only few cases primarily associated with turbulent mixing or convection. A composite analysis further reveals that cyclones primarily associated with PV generation by convection exhibit a negative air–surface temperature difference in the warm sector, which promotes a heat flux directed into the atmosphere. These cyclones generally occur over warm ocean currents in the cold season. On the other hand, cyclones that occur in a significantly colder environment are often associated with a positive air–surface temperature difference in the warm sector, leading to PV generation by long-wave radiative cooling. Finally, long-wave radiative heating due to a negative air–surface temperature difference in the cold sector produces negative PV along the cold and warm front, in particular in the cold season.


Author(s):  
Marie Mazoyer ◽  
Didier Ricard ◽  
Gwendal Rivière ◽  
Julien Delanoë ◽  
Philippe Arbogast ◽  
...  

AbstractThis study investigates diabatic processes along the warm conveyor belt (WCB) of a deep extra-tropical cyclone observed of the North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX). The aim is to investigate the effect of two different microphysics schemes, the one-moment scheme ICE3 and the quasi two-moment scheme LIMA, on the WCB and the ridge building downstream. ICE3 and LIMA also differ on the processes of vapor deposition on hydrometeors in cold and mixed-phase clouds. Latent heating in ICE3 is found to be dominated by deposition on ice while the heating in LIMA is distributed among depositions on ice, snow and graupel. ICE3 is the scheme leading to the largest number of WCB trajectories (30% more than LIMA) due to greater heating rates over larger areas. The consequence is that the size of the upper-level ridge is growing more rapidly in ICE3 than LIMA, albeit with some exceptions in localized regions of the cyclonic branch of the WCB. A comparison with various observations (airborne remote sensing measurements, dropsondes and satellite data) is then performed. Below the melting layer, the observed reflectivity is rather well reproduced by the model. Above the melting layer, in the middle of the troposphere, the reflectivity and retrieved ice water content are largely underestimated by both schemes while at upper levels, the ICE3 scheme performs much better than LIMA in agreement with a closer representation of the observed winds by ICE3. These results underline the strong sensitivity of upper-level dynamics to ice related processes.


2021 ◽  
Author(s):  
Gabriel Vollenweider ◽  
Elisa Spreitzer ◽  
Sebastian Schemm

Abstract. The study of atmospheric circulation from a potential vorticity (PV) perspective has advanced our mechanistic understanding of the development and propagation of weather systems. The formation of PV anomalies by nonconservative processes can provide additional insight into the diabatic-to-adiabatic coupling in the atmosphere. PV nonconservation can be driven by changes in static stability, vorticity or a combination of both. For example, in the presence of localized latent heating, the static stability increases below the level of maximum heating and decreases above this level. However, the vorticity changes in response to the changes in static stability (and vice versa), making it difficult to disentangle stability from vorticity-driven PV changes. Further diabatic processes, such as friction or turbulent momentum mixing, result in momentum-driven, and hence vorticity-driven, PV changes in the absence of moist diabatic processes. In this study, a vorticity-and-stability diagram is introduced as a means to study and identify periods of stability- and vorticity-driven changes in PV. Potential insights and limitations from such a hyperbolic diagram are investigated based on three case studies. The first case is an idealized warm conveyor belt (WCB) in a baroclinic channel simulation. The simulation allows only condensation and evaporation. In this idealized case, PV along the WCB is first conserved, while stability decreases and vorticity increases as the air parcels move poleward near the surface in the cyclone warm sector. The subsequent PV modification and increase during the strong WCB ascent is, at low levels, dominated by an increase in static stability. However, the following PV decrease at upper levels is due to a decrease in absolute vorticity with only small changes in static stability. The vorticity decrease occurs first at a rate of 0.5 f per hour and later decreases to approximately 0.25 f per hour, while static stability is fairly well conserved throughout the period of PV reduction. One possible explanation for this observation is the combined influence of diabatic and adiabatic processes on vorticity and static stability. At upper levels, large-scale divergence ahead of the trough leads to a negative vorticity tendency and a positive static stability tendency. In a dry atmosphere, the two changes would occur in tandem to conserve PV. In the case of additional diabatic heating in the mid troposphere, the positive static stability tendency caused by the dry dynamics appears to be offset by the diabatic tendency to reduce the static stability above the level of maximum heating. This combination of diabatically and adiabatically driven static stability changes leads to its conservation, while the adiabatically forced negative vorticity tendency continues. Hence, PV is not conserved and reduces along the upper branch of the WCB. Second, in a fullfledged real case study with the Integrated Forecasting System (IFS), the PV changes along the WCB appear to be dominated by vorticity changes throughout the flow of the air. However, accumulated PV tendencies are dominated by latent heat release from the large-scale cloud and convection schemes, which mainly produce temperature tendencies. The absolute vorticity decrease during the period of PV reduction lasts for several hours, and is first in the order of 0.5 f per hour and later decreases to 0.1f per hour when latent heat release becomes small, while static stability reduces moderately. PV and absolute vorticity turn negative after several hours. In a third case study of an air parcel impinging on the warm front of an extratropical cyclone, changes in the horizontal PV components dominate the total PV change along the flow and thereby violate a key approximation of the two-dimensional vorticity-and-stability diagram. In such a situation where the PV change cannot be approximated by its vertical component, a higher-dimensional vorticity-and-stability diagram is required. Nevertheless, the vorticity-and-stability diagram can provide supplementary insights into the nature of diabatic PV changes.


Author(s):  
Allison C. Michaelis ◽  
Andrew C. Martin ◽  
Meredith A. Fish ◽  
Chad W. Hecht ◽  
F. Martin Ralph

AbstractA complex and underexplored relationship exists between atmospheric rivers (ARs) and mesoscale frontal waves (MFWs). The present study further explores and quantifies the importance of diabatic processes to MFW development and the AR-MFW interaction by simulating two ARs impacting Northern California’s flood-vulnerable Russian River watershed using the Model for Prediction Across Scales-Atmosphere (MPAS-A) with and without the effects of latent heating. Despite the storms’ contrasting characteristics, diabatic processes within the system were critical to the development of MFWs, the timing and magnitude of integrated vapor transport (IVT), and precipitation impacts over the Russian River watershed in both cases. Low-altitude circulations and lower-tropospheric moisture content in and around the MFWs are considerably reduced without latent heating, contributing to a decrease in moisture transport, moisture convergence, and IVT. Differences in IVT are not consistently dynamic (i.e., wind-driven) or thermodynamic (i.e., moisture-driven), but instead vary by case and by time throughout each event. For one event, AR conditions over the watershed persisted for 6 h less and the peak IVT occurred 6 h earlier and was reduced by ~17%; weaker orographic and dynamic precipitation forcings reduced precipitation totals by ~64%. Similarly, turning off latent heating shortened the second event by 24 h and reduced precipitation totals by ~49%; the maximum IVT over the watershed was weakened by ~42% and delayed by 18 h. Thus, sufficient representation of diabatic processes, and by inference, water vapor initial conditions, is critical for resolving MFWs, their feedbacks on AR evolution, and associated precipitation forecasts on watershed scales.


2021 ◽  
Author(s):  
Roman Attinger ◽  
Elisa Spreitzer ◽  
Maxi Boettcher ◽  
Heini Wernli ◽  
Hanna Joos

Abstract. Diabatic processes significantly affect the development and structure of extratropical cyclones. Previous studies quantified the dynamical relevance of selected diabatic processes by studying their influence on potential vorticity (PV) in individual cyclones. However, a more general assessment of the relevance of all PV-modifying processes in a larger ensemble of cyclones is currently missing. Based on a series of twelve 35-day model simulations using the Integrated Forecasting System (IFS) of the European Centre for Medium-range Weather Forecasts (ECMWF), this study systematically quantifies the relevance of individual diabatic processes for the dynamics of 288 rapidly intensifying extratropical cyclones. To this end, PV tendencies associated with each parametrized process in the model are accumulated along 15 h backward trajectories. The investigation focuses on regions of high PV (≥ 1 PVU) along the cold front, warm front, and in the cyclone center, as well as of negative PV (≤ −0.1 PVU) along the cold and warm front in the lower troposphere. On average, the primary processes that modify PV during the 24 h period of most rapid cyclone intensification remain temporally consistent for all anomalies considered. However, a pronounced case-to-case variability is found when comparing the dominant processes across individual cyclones. Along the cold front, PV is primarily generated by condensation in half of the investigated cyclones. For the remaining cyclones, convection or long-wave radiative cooling become the dominant process depending on environmental conditions. Results are similar for both seasons, with a reduced role of convection for the generation of PV along the cold front in the warm season. Negative PV west of the cold front is produced by turbulent exchange of momentum and temperature as well as long-wave radiative heating. The relevance of long-wave radiative heating is reduced during summer. The positive PV anomaly at the warm front is predominantly generated by condensation in the cold season, whereas turbulent mixing becomes the prevalent process during the warm season. Convection only plays a minor role for the generation of PV at the warm front. Negative PV along the warm front is produced by long-wave radiative heating, turbulent temperature tendencies, or melting of snow in the cold season. Turbulent temperature tendencies become the dominant process decreasing PV at the warm front in the warm season, together with melting of snow and turbulent exchange of momentum. The positive PV anomaly in the cyclone center is primarily produced by condensation, with only few cyclones where PV production is mainly associated with turbulent mixing or convection. A composite analysis further reveals that PV anomalies generated by convection require a negative air-sea temperature difference in the warm sector of the cyclone, which promotes a heat flux directed into the atmosphere and destabilizes the boundary layer. These cyclones primarily occur over warm ocean currents in the cold season. On the other hand, cyclones that occur in a significantly colder environment are often associated with a positive air-sea temperature difference in the warm sector, leading to PV generation by long-wave radiative cooling. Finally, long-wave radiative heating due to a negative air-sea temperature difference in the cold sector can produce negative PV along the cold and warm front. The general agreement between accumulated PV tendencies and the net PV change along trajectories is good. Therefore, the approach used in this study yields valuable insight regarding the specific physical processes that modify low-level PV in rapidly deepening extratropical cyclones.


Author(s):  
Abhishek Savita ◽  
Jan D. Zika ◽  
Catia M. Domingues ◽  
Simon J. Marsland ◽  
Gwyn Dafydd Evans ◽  
...  

AbstractOcean circulation and mixing regulate Earth’s climate by moving heat vertically within the ocean. We present a new formalism to diagnose the role of ocean circulation and diabatic processes in setting vertical heat transport in ocean models. In this formalism we use temperature tendencies, rather than explicit vertical velocities to diagnose circulation. Using quasi-steady state simulations from the Australian Community Climate and Earth-System Simulator Ocean Model (ACCESS-OM2), we diagnose a diathermal overturning circulation in temperature-depth space. Furthermore, projection of tendencies due to diabatic processes onto this coordinate permits us to represent these as apparent overturning circulations. Our framework permits us to extend the concept of Super-Residual Transport (SRT), which combines mean and eddy advection terms with subgridscale isopycnal mixing due to mesoscale eddies, but excludes small-scale three dimensional turbulent mixing effect, to construct a new overturning circulation – the ‘Super Residual Circulation’ (SRC).We find that in the coarse resolution version of ACCESS-OM2 (nominally 1° horizontal resolution) the SRC is dominated by an ~11 Sv circulation which transports heat upward. The SRC’s upward heat transport is ~2 times larger in a finer horizontal resolution (0.1°) version of ACCESS, suggesting a differing balance of super-residual and parameterized small-scale processes may emerge as eddies are resolved. Our analysis adds new insight into super-residual processes, as the SRC elucidates the pathways in temperature and depth space along which watermass transformation occurs.


2021 ◽  
Vol 2 (1) ◽  
pp. 255-279
Author(s):  
Emmanouil Flaounas ◽  
Suzanne L. Gray ◽  
Franziska Teubler

Abstract. In this study, we address the question of the atmospheric processes that turn Mediterranean cyclones into severe storms. Our approach applies online potential vorticity (PV) budget diagnostics and piecewise PV inversion to WRF model simulations of the mature stage of 100 intense Mediterranean cyclones. We quantify the relative contributions of different processes to cyclone development and therefore deliver, for the first time, a comprehensive insight into the variety of cyclonic systems that develop in the Mediterranean from the perspective of cyclone dynamics. In particular, we show that all 100 cyclones are systematically influenced by two main PV anomalies: a major anomaly in the upper troposphere, related to the baroclinic forcing of cyclone development, and a minor anomaly in the lower troposphere, related to diabatic processes and momentum forcing of wind. Among the diabatic processes, latent heat is shown to act as the main PV source (reinforcing cyclones), being partly balanced by PV sinks of temperature diffusion and radiative cooling (weakening cyclones). Momentum forcing is shown to have an ambiguous feedback, able to reinforce and weaken cyclones while in certain cases playing an important role in cyclone development. Piecewise PV inversion shows that most cyclones develop due to the combined effect of both baroclinic and diabatic forcing, i.e. due to both PV anomalies. However, the stronger the baroclinic forcing, the less a cyclone is found to develop due to diabatic processes. Several pairs of exemplary cases are used to illustrate the variety of contributions of atmospheric processes to the development of Mediterranean cyclones: (i) cases where both baroclinic and diabatic processes contribute to cyclone development; (ii) cases that mainly developed due to latent-heat release; (iii) cases developing in the wake of the Alps; and (iv) two unusual cases, one where momentum forcing dominates cyclone development and the other presenting a dual-surface pressure centre. Finally, we focus on 10 medicane cases (i.e. tropical-like cyclones). In contrast to their tropical counterparts – but in accordance with most intense Mediterranean cyclones – most medicanes are shown to develop under the influence of both baroclinic and diabatic processes. In discussion of medicane-driving processes, we highlight the need for a physical definition of these systems.


2021 ◽  
Author(s):  
Rupert Klein ◽  
Lisa Schielicke ◽  
Stephan Pfahl ◽  
Boualem Khouider

<p>Quasi-geostrophic (QG) theory describes the dynamics of synoptic scale flows in the trophosphere that are balanced with respect to both acoustic and internal gravity waves. Within this framework, effects of (turbulent) friction near the ground are usually represented by invoking Ekman Layer theory. The troposphere covers roughly the lowest ten kilometers of the atmosphere while Ekman layer heights are typically just a few hundred meters. However, this two-layer asymptotic theory does not explicitly account for substantial changes of the potential temperature stratification due to diabatic heating associated with cloud formation or with radiative or turbulent heat fluxes, which, in the middle latitudes, can be particularly important in roughly the lowest three kilometers. To alleviate this constraint, this work extends the classical QG plus Ekman layer model by introducing an intermediate, dynamically and thermodynamically active layer, called the "Diabatic Layer" here. The flow in this layer is also in acoustic, hydrostatic, and geostrophic balance but, in contrast to QG flow, variations of potential temperature are not restricted to small deviations from a stable and time independent background stratification. Instead, within this layer, diabatic processes are allowed to affect the leading-order stratification. As a consequence, the Diabatic Layer modifies the pressure field at the top of the Ekman layer, and with it the intensity of Ekman pumping seen by the quasi-geostrophic bulk flow. This leads to a new model for the coupled dynamics of the bulk troposphere, the diabatic layer, and the Ekman layer when strong diabatic processes substantially change the stratification in the lower part of the atmosphere. </p>


2021 ◽  
Author(s):  
Christian M. Grams

<p>Weather regimes are quasi-stationary, persistent, and recurrent states of the large-scale extratropical circulation. In the Atlantic-European region these explain most of the atmospheric variability on sub-seasonal time scales. However, current numerical weather prediction (NWP) systems struggle in correctly predicting weather regime life cycles. Latent heat release in ascending air streams injects air into the upper troposphere, which might ultimately result in blocking. Such diabatic outflow is often linked to warm conveyor belt (WCB) activity and has been shown to be involved in upscale error growth up to the regime scale. This study systematically investigates the role of diabatic outflow in the life cycle of Atlantic-European weather regimes.</p><p>An extended definition of 7 year-round Atlantic-European weather regimes from 37 years of ERA-Interim reanalysis is used. This is based on an EOF analysis and k-means clustering of normalized low-pass-filtered 500hPa geopotential height anomalies. Furthermore an objective regime life cycle is derived. The role of cloud-diabatic processes in European weather regimes is assessed based on time lag analysis of WCB activity at specific life cycle stages.</p><p>Results indicate that the period prior to regime onset is characterized by important changes in location and frequency of WCB occurrence. Most importantly, prior to the onset of regimes characterized by blocking, WCB activity increases significantly upstream of the incipient blocking even before blocking is detectable and persists over the blocked region later. This suggests that diabatic WCB outflow helps to establish and maintain blocked regimes. Thus it is important to correctly represent cloud-diabatic processes in NWP models across multiple scales in order to predict the large-scale circulation accurately. Ongoing work now systematically investigates the representation of WCB activity in current NWP systems and how this relates to the forecast skill for weather regimes.</p>


Sign in / Sign up

Export Citation Format

Share Document