scholarly journals Time-Varying Empirical Probability Densities of Southern Ocean Surface Winds: Linking the Leading Mode to SAM and QuantifyingWind Product Differences

2021 ◽  
pp. 1-80
Author(s):  
Momme C. Hell ◽  
Bruce D. Cornuelle ◽  
Sarah T. Gille ◽  
Nicholas J. Lutsko

AbstractSouthern Ocean (SO) surface winds are essential for ventilating the upper ocean by bringing heat and CO2 to the ocean interior. The relationships between mixed-layer ventilation, the Southern Annular Mode (SAM), and the storm tracks remain unclear because processes can be governed by short-term wind events as well as long-term means.In this study, observed time-varying 5-day probability density functions (PDFs) of ERA5 surface winds and stresses over the SO are used in a singular value decomposition to derive a linearly independent set of empirical basis functions. The first modes of wind (72% of the total wind variance) and stress (74% of the total stress variance) are highly correlated with a standard SAM index (r = 0.82) and reflect SAM’s role in driving cyclone intensity and, in turn, extreme westerly winds. This Joint PDFs of zonal and meridional wind show that southerly and less westerly winds associated with strong mixed-layer ventilation are more frequent during short and distinct negative SAM phases. The probability of these short-term events might be related to mid-latitude atmospheric circulation. The second mode describes seasonal changes in the wind variance (16% of the total variance) that are uncorrelated with the first mode.The analysis produces similar results when repeated using 5-day PDFs from a suite of scatterometer products. Differences between wind product PDFs resemble the first mode of the PDFs. Together, these results show a strong correlation between surface stress PDFs and the leading modes of atmospheric variability, suggesting that empirical modes can serve as a novel pathway for understanding differences and variability of surface stress PDFs.

2012 ◽  
Vol 25 (20) ◽  
pp. 6958-6974 ◽  
Author(s):  
C. O. Dufour ◽  
J. Le Sommer ◽  
J. D. Zika ◽  
M. Gehlen ◽  
J. C. Orr ◽  
...  

Abstract To refine the understanding of how the Southern Ocean responds to recent intensification of the southern annular mode (SAM), a regional ocean model at two eddy-permitting resolutions was forced with two synthetic interannual forcings. The first forcing corresponds to homogeneously intensified winds, while the second concerns their poleward intensification, consistent with positive phases of the SAM. Resulting wind-driven responses differ greatly between the nearly insensitive Antarctic Circumpolar Current (ACC) and the more sensitive meridional overturning circulation (MOC). As expected, eddies mitigate the response of the ACC and MOC to poleward-intensified winds. However, transient eddies do not necessarily play an increasing role in meridional transport with increasing resolution. As winds and resolution increase, meridional transport from standing eddies becomes more efficient at balancing wind-enhanced overturning. These results question the current paradigms on the role of eddies and present new challenges for eddy flux parameterization. Results also indicate that spatial patterns of wind anomalies are at least as important as the overall change in intensity in influencing the Southern Ocean’s dynamic response to wind events. Poleward-intensified wind anomalies from the positive trend in the SAM are far more efficient in accelerating the ACC than homogeneous wind anomalies.


2020 ◽  
pp. 1-47
Author(s):  
Edward W. Doddridge ◽  
John Marshall ◽  
Hajoon Song ◽  
Jean-Michel Campin ◽  
Maxwell Kelley

AbstractThe observational record shows a substantial 40-year upward trend in summertime westerly winds over the Southern Ocean, as characterised by the Southern Annular Mode (SAM) index. Enhanced summertime westerly winds have been linked to cold summertime sea surface temperature (SST) anomalies. Previous studies have suggested that Ekman transport or upwelling is responsible for this seasonal cooling. Here, another process is presented in which enhanced vertical mixing, driven by summertime wind anomalies, moves heat downwards, cooling the sea surface and simultaneously warming the subsurface waters. The anomalously cold SSTs draw heat from the atmosphere into the ocean, leading to increased depth-integrated ocean heat content. The subsurface heat is returned to the surface mixed layer during the autumn and winter as the mixed layer deepens, leading to anomalously warm SSTs and potentially reducing sea ice cover. Observational analyses and numerical experiments support our proposed mechanism, showing that enhanced vertical mixing produces subsurface warming and cools the surface mixed layer. Nevertheless, the dominant driver of surface cooling remains uncertain; the relative importance of advective and mixing contributions to the surface cooling is model dependent. Modeling results suggest that sea ice volume is more sensitive to summertime winds than sea ice extent, implying that enhanced summertime westerly winds may lead to thinner sea ice in the following winter, if not lesser ice extent. Thus, strong summertime winds could precondition the sea ice cover for a rapid retreat in the following melt season.


2019 ◽  
Vol 6 (12) ◽  
pp. 2624-2643 ◽  
Author(s):  
Doo Young Lee ◽  
Mark R. Petersen ◽  
Wuyin Lin

2017 ◽  
Vol 47 (10) ◽  
pp. 2521-2530 ◽  
Author(s):  
Stephanie M. Downes ◽  
Clothilde Langlais ◽  
Jordan P. Brook ◽  
Paul Spence

AbstractSubduction processes in the Southern Ocean transfer oxygen, heat, and anthropogenic carbon into the ocean interior. The future response of upper-ocean subduction, in the Subantarctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW) classes, is dependent on the evolution of the combined surface buoyancy forcing and overlying westerly wind stress. Here, the recently observed pattern of a poleward intensification of the westerly winds is divided into its shift and increase components. SAMW and AAIW formation occurs in regional “hot spots” in deep mixed layer zones, primarily in the southeast Indian and Pacific. It is found that the mixed layer depth responds differently to wind stress perturbations across these regional formation zones. An increase only in the westerly winds in the Indian sector steepens isopycnals and increases the local circulation, driving deeper mixed layers and increased subduction. Conversely, in the same region, a poleward shift and poleward intensification of the westerly winds reduces heat loss and increases freshwater input, thus decreasing the mixed layer depth and consequently the associated SAMW and AAIW subduction. In the Pacific sector, all wind stress perturbations lead to increases in heat loss and decreases in freshwater input, resulting in a net increase in SAMW and AAIW subduction. Overall, the poleward shift in the westerly wind stress dominates the SAMW subduction changes, rather than the increase in wind stress. The net decrease in SAMW subduction across all basins would likely decrease anthropogenic carbon sequestration; however, the net AAIW subduction changes across the Southern Ocean are overall minor.


2019 ◽  
Vol 32 (18) ◽  
pp. 6177-6195 ◽  
Author(s):  
Qian Li ◽  
Sukyoung Lee ◽  
Matthew H. England ◽  
Julie L. McClean

Abstract The relationship between the southern annular mode (SAM) and Southern Ocean mixed layer depth (MLD) is investigated using a global 0.1° resolution ocean model. The SAM index is defined as the principal component time series of the leading empirical orthogonal function of extratropical sea level pressure from September to December, when the zonally symmetric SAM feature is most prominent. Following positive phases of the SAM, anomalous deep mixed layers occur in the subsequent fall season, starting in May, particularly in the southeast Pacific. Composite analyses reveal that for positive SAM phases enhanced surface cooling caused by anomalously strong westerlies weakens the stratification of the water column, leading to deeper mixed layers during spring when the SAM signal is at its strongest. During the subsequent summer, the surface warms and the mixed layer shoals. However, beneath the warm surface layer, anomalously weak stratification persists throughout the summer and into fall. When the surface cools again during fall, the mixed layer readily deepens due to this weak interior stratification, a legacy from the previous springtime conditions. Therefore, the spring SAM–fall MLD relationship is interpreted here as a manifestation of reemergence of interior water mass anomalies. The opposite occurs after negative phases of the SAM, with anomalously shallow mixed layers resulting. Additional analyses reveal that for the MLD region in the southeast Pacific, the effects of salinity variations and Ekman heat advection are negligible, although Ekman heat transport may play an important role in other regions where mode water is formed, such as south of Australia and in the Indian Ocean.


2006 ◽  
Vol 18 (3) ◽  
pp. 429-436 ◽  
Author(s):  
P.L. Woodworth ◽  
C.W. Hughes ◽  
D.L. Blackman ◽  
V.N. Stepanov ◽  
S.J. Holgate ◽  
...  

Sub-surface pressure (SSP) data from tide gauges at three bases on the Pacific coast of the Antarctic Peninsula, together with SSP information from a bottom pressure recorder deployed on the south side of the Drake Passage, have been used to study the relationships between SSP, Drake Passage transport, and the strength of Southern Ocean zonal winds as represented by the Southern Annular Mode. High correlations were obtained between all parameters, confirming results obtained previously with independent data sets, and demonstrating the value of information from the permanent Rothera base, the southern-most site considered. These are important findings with regard to the design, installation and maintenance of observation networks in Antarctica. In particular, they provide the necessary justification for Antarctic Peninsula tide gauge infrastructure investment in the lead up to International Polar Year. Data delivery from Rothera and Vernadsky is currently being improved and should soon enable the first near real-time system for monitoring Drake Passage transport variability on intraseasonal timescales, an essential component of a Southern Ocean Observing System.


BMC Medicine ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Sahamoddin Khailaie ◽  
Tanmay Mitra ◽  
Arnab Bandyopadhyay ◽  
Marta Schips ◽  
Pietro Mascheroni ◽  
...  

Abstract Background SARS-CoV-2 has induced a worldwide pandemic and subsequent non-pharmaceutical interventions (NPIs) to control the spread of the virus. As in many countries, the SARS-CoV-2 pandemic in Germany has led to a consecutive roll-out of different NPIs. As these NPIs have (largely unknown) adverse effects, targeting them precisely and monitoring their effectiveness are essential. We developed a compartmental infection dynamics model with specific features of SARS-CoV-2 that allows daily estimation of a time-varying reproduction number and published this information openly since the beginning of April 2020. Here, we present the transmission dynamics in Germany over time to understand the effect of NPIs and allow adaptive forecasts of the epidemic progression. Methods We used a data-driven estimation of the evolution of the reproduction number for viral spreading in Germany as well as in all its federal states using our model. Using parameter estimates from literature and, alternatively, with parameters derived from a fit to the initial phase of COVID-19 spread in different regions of Italy, the model was optimized to fit data from the Robert Koch Institute. Results The time-varying reproduction number (Rt) in Germany decreased to <1 in early April 2020, 2–3 weeks after the implementation of NPIs. Partial release of NPIs both nationally and on federal state level correlated with moderate increases in Rt until August 2020. Implications of state-specific Rt on other states and on national level are characterized. Retrospective evaluation of the model shows excellent agreement with the data and usage of inpatient facilities well within the healthcare limit. While short-term predictions may work for a few weeks, long-term projections are complicated by unpredictable structural changes. Conclusions The estimated fraction of immunized population by August 2020 warns of a renewed outbreak upon release of measures. A low detection rate prolongs the delay reaching a low case incidence number upon release, showing the importance of an effective testing-quarantine strategy. We show that real-time monitoring of transmission dynamics is important to evaluate the extent of the outbreak, short-term projections for the burden on the healthcare system, and their response to policy changes.


2008 ◽  
Vol 66 (4) ◽  
pp. 441-463 ◽  
Author(s):  
J. B. Sallée ◽  
Kevin Speer ◽  
R. Morrow ◽  
R. Lumpkin

Sign in / Sign up

Export Citation Format

Share Document