Understanding the Roles of Convective Trigger Functions in the Diurnal Cycle of Precipitation in the NCAR CAM5

2021 ◽  
pp. 1-52
Author(s):  
Zeyu Cui ◽  
Guang J. Zhang ◽  
Yong Wang ◽  
Shaocheng Xie

AbstractThe wrong diurnal cycle of precipitation is a common weakness of current global climate models (GCMs). To improve the simulation of the diurnal cycle of precipitation and understand what physical processes control it, we test a convective trigger function described in Xie et al. (2019) with additional optimizations in the NCAR Community Atmosphere Model version 5 (CAM5). The revised trigger function consists of three modifications: 1) replacing the Convective Available Potential Energy (CAPE) trigger with a dynamic CAPE (dCAPE) trigger, 2) allowing convection to originate above the top of planetary boundary layer (i.e., the unrestricted air parcel launch level - ULL), and 3) optimizing the entrainment rate and threshold value of the dynamic CAPE generation rate for convection onset based on observations. Results from 1°-resolution simulations show that the revised trigger can alleviate the long-standing GCM problem of too early maximum precipitation during the day and missing the nocturnal precipitation peak that is observed in many regions, including the US Southern Great Plains (SGP). The revised trigger also improves the simulation of the propagation of precipitation systems downstream of the Rockies and the Amazon region. A further composite analysis over the SGP unravels the mechanisms through which the revised trigger affects convection. Additional sensitivity tests show that both the peak time and the amplitude of the diurnal cycle of precipitation are sensitive to the entrainment rate and dCAPE threshold values.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mateusz Taszarek ◽  
John T. Allen ◽  
Mattia Marchio ◽  
Harold E. Brooks

AbstractGlobally, thunderstorms are responsible for a significant fraction of rainfall, and in the mid-latitudes often produce extreme weather, including large hail, tornadoes and damaging winds. Despite this importance, how the global frequency of thunderstorms and their accompanying hazards has changed over the past 4 decades remains unclear. Large-scale diagnostics applied to global climate models have suggested that the frequency of thunderstorms and their intensity is likely to increase in the future. Here, we show that according to ERA5 convective available potential energy (CAPE) and convective precipitation (CP) have decreased over the tropics and subtropics with simultaneous increases in 0–6 km wind shear (BS06). Conversely, rawinsonde observations paint a different picture across the mid-latitudes with increasing CAPE and significant decreases to BS06. Differing trends and disagreement between ERA5 and rawinsondes observed over some regions suggest that results should be interpreted with caution, especially for CAPE and CP across tropics where uncertainty is the highest and reliable long-term rawinsonde observations are missing.


2014 ◽  
Vol 27 (10) ◽  
pp. 3848-3868 ◽  
Author(s):  
John T. Allen ◽  
David J. Karoly ◽  
Kevin J. Walsh

Abstract The influence of a warming climate on the occurrence of severe thunderstorm environments in Australia was explored using two global climate models: Commonwealth Scientific and Industrial Research Organisation Mark, version 3.6 (CSIRO Mk3.6), and the Cubic-Conformal Atmospheric Model (CCAM). These models have previously been evaluated and found to be capable of reproducing a useful climatology for the twentieth-century period (1980–2000). Analyzing the changes between the historical period and high warming climate scenarios for the period 2079–99 has allowed estimation of the potential convective future for the continent. Based on these simulations, significant increases to the frequency of severe thunderstorm environments will likely occur for northern and eastern Australia in a warmed climate. This change is a response to increasing convective available potential energy from higher continental moisture, particularly in proximity to warm sea surface temperatures. Despite decreases to the frequency of environments with high vertical wind shear, it appears unlikely that this will offset increases to thermodynamic energy. The change is most pronounced during the peak of the convective season, increasing its length and the frequency of severe thunderstorm environments therein, particularly over the eastern parts of the continent. The implications of this potential increase are significant, with the overall frequency of potential severe thunderstorm days per year likely to rise over the major population centers of the east coast by 14% for Brisbane, 22% for Melbourne, and 30% for Sydney. The limitations of this approach are then discussed in the context of ways to increase the confidence of predictions of future severe convection.


2010 ◽  
Vol 10 (10) ◽  
pp. 4757-4774 ◽  
Author(s):  
M. C. Wyant ◽  
R. Wood ◽  
C. S. Bretherton ◽  
C. R. Mechoso ◽  
J. Bacmeister ◽  
...  

Abstract. The Preliminary VOCALS Model Assessment (PreVOCA) aims to assess contemporary atmospheric modeling of the subtropical South East Pacific, with a particular focus on the clouds and the marine boundary layer (MBL). Models results from fourteen modeling centers were collected including operational forecast models, regional models, and global climate models for the month of October 2006. Forecast models and global climate models produced daily forecasts, while most regional models were run continuously during the study period, initialized and forced at the boundaries with global model analyses. Results are compared in the region from 40° S to the equator and from 110° W to 70° W, corresponding to the Pacific coast of South America. Mean-monthly model surface winds agree well with QuikSCAT observed winds and models agree fairly well on mean weak large-scale subsidence in the region next to the coast. However they have greatly differing geographic patterns of mean cloud fraction with only a few models agreeing well with MODIS observations. Most models also underestimate the MBL depth by several hundred meters in the eastern part of the study region. The diurnal cycle of liquid water path is underestimated by most models at the 85° W 20° S stratus buoy site compared with satellite, consistent with previous modeling studies. The low cloud fraction is also underestimated during all parts of the diurnal cycle compared to surface-based climatologies. Most models qualitatively capture the MBL deepening around 15 October 2006 at the stratus buoy, associated with colder air at 700 hPa.


2006 ◽  
Vol 19 (10) ◽  
pp. 2105-2117 ◽  
Author(s):  
Michael P. Jensen ◽  
Anthony D. Del Genio

Abstract Cumulus congestus clouds, with moderate shortwave albedos and cloud-top temperatures near freezing, occur fairly often in the Tropics. These clouds may play an important role in the evolution of the Madden–Julian oscillation and the regulation of relative humidity in the midtroposphere. Despite this importance they are not necessarily simulated very well in global climate models. Surface remote sensing observations and soundings from the Atmospheric Radiation Measurement (ARM) climate research facility at Nauru Island are coupled with a simple parcel model in order to address the following questions about these cloud types: 1) Which environmental factors play a role in determining the depth of tropical convective clouds? 2) What environmental parameters are related to entrainment rate in cumulus congestus clouds? The results presented herein suggest that at Nauru Island a drying of the midtroposphere is more likely to be responsible for limiting congestus cloud-top heights than is a stabilizing of the freezing level. It is also found that low-level CAPE and the RH profile account for the largest portion of the variance in cumulus congestus entrainment rates, consistent with the idea that entrainment rate depends on the buoyant production of turbulent kinetic energy. If the analysis is limited to cases where there is a sounding during the hour preceding the cumulus congestus observations, it is found that the low-level CAPE accounts for 85% of the total variance in entrainment rate.


2015 ◽  
Vol 30 (2) ◽  
pp. 424-445 ◽  
Author(s):  
Xiaogang He ◽  
Hyungjun Kim ◽  
Pierre-Emmanuel Kirstetter ◽  
Kei Yoshimura ◽  
Eun-Chul Chang ◽  
...  

Abstract As a basic form of climate patterns, the diurnal cycle of precipitation (DCP) can provide a key test bed for model reliability and development. In this study, the DCP over West Africa was simulated by the National Centers for Environmental Prediction (NCEP) Regional Spectral Model (RSM) during the monsoon season (April–September) of 2005. Three convective parameterization schemes (CPSs), single-layer simplified Arakawa–Schubert (SAS), multilayer relaxed Arakawa–Schubert (RAS), and new Kain–Fritsch (KF2), were evaluated at two horizontal resolutions (20 and 10 km). The Benin mesoscale site was singled out for additional investigation of resolution effects. Harmonic analysis was used to characterize the phase and amplitude of the DCP. Compared to satellite observations, the overall spatial distributions of amplitude were well captured at regional scales. The RSM properly reproduced the observed late afternoon peak over land and the early morning peak over ocean. Nevertheless, the peak time was early. Sensitivity experiments of CPSs showed similar spatial patterns of rainfall totals among the schemes; CPSs mainly affected the amplitude of the diurnal cycle, while the phase was not significantly shifted. There is no clear optimal pairing of resolution and CPS. However, it is found that the sensitivity of DCP to CPSs and resolution varies with the partitioning between convective and stratiform, which implies that appropriate partitioning needs to be considered for future development of CPSs in global or regional climate models.


2014 ◽  
Vol 27 (20) ◽  
pp. 7647-7666 ◽  
Author(s):  
E. Suhas ◽  
Guang J. Zhang

Abstract Realistic simulation of different modes of atmospheric variability ranging from diurnal cycle to interannual variation in global climate models (GCMs) depends crucially on the convection trigger criteria. In this study, using the data from constrained variational analysis by the Atmospheric System Research program for single-column models (SCM), the performance of the commonly used convective trigger functions in GCMs is evaluated based on the equitable threat score (ETS) value, a widely used forecast verification metric. From the ETS score, three consistently better-performing trigger functions were identified. They are based on the dilute and undilute convective available potential energy (CAPE) generation rate from large-scale forcing in the free troposphere (hereafter dCAPE) and parcel buoyancy at the lifting condensation level (Bechtold scheme). The key variables used to define these trigger functions are examined in detail. It is found that the dilute dCAPE trigger function performs the best consistently in both the tropical and midlatitude convective environment. Analysis of the composite fields of key variables of the trigger functions, based on the correct prediction, overprediction and underprediction of convection, and correct prediction of no-convection cases for convective onset, brings to light some critical factors responsible for the performance of the trigger functions. The lower-tropospheric advective forcing in dilute dCAPE trigger and vertical velocity in Bechtold trigger are identified to be the most importance ones. Suggestions are offered for further improvements.


2011 ◽  
Vol 39 (1-2) ◽  
pp. 399-418 ◽  
Author(s):  
Paul A. Dirmeyer ◽  
Benjamin A. Cash ◽  
James L. Kinter ◽  
Thomas Jung ◽  
Lawrence Marx ◽  
...  

2009 ◽  
Vol 9 (6) ◽  
pp. 23909-23953 ◽  
Author(s):  
M. C. Wyant ◽  
R. Wood ◽  
C. S. Bretherton ◽  
C. R. Mechoso ◽  
J. Bacmeister ◽  
...  

Abstract. The Preliminary VOCALS Model Assessment (PreVOCA) aims to assess contemporary atmospheric modeling of the subtropical South East Pacific, with a particular focus on the clouds and the marine boundary layer (MBL). Models results from fourteen modeling centers were collected including operational forecast models, regional models, and global climate models for the month of October 2006. Forecast models and global climate models produced daily forecasts, while most regional models were run continuously during the study period, initialized and forced at the boundaries with global model analyses. Results are compared in the region from 40° S to the equator and from 110° W to 70° W, corresponding to the Pacific coast of South America. Mean-monthly model surface winds agree well with QuikSCAT observed winds and models agree fairly well on mean weak large-scale subsidence in the region next to the coast. However they have greatly differing mean geographic patterns of cloud fraction with only a few models agreeing well with MODIS observations. Most models also underestimate the MBL depth by several hundred meters in the eastern part of the study region. The diurnal cycle of liquid water path is underestimated by most models at the 85° W 20° S stratus buoy site compared with satellite, consistent with previous modeling studies. The low cloud fraction is also underestimated during all parts of the diurnal cycle compared to surface-based climatologies. Most models qualitatively capture the MBL deepening around 15 October 2006 at the stratus buoy, associated with colder air at 700 hPa.


2009 ◽  
Vol 22 (13) ◽  
pp. 3540-3557 ◽  
Author(s):  
Jonathan Rougier ◽  
David M. H. Sexton ◽  
James M. Murphy ◽  
David Stainforth

Abstract Global climate models (GCMs) contain imprecisely defined parameters that account, approximately, for subgrid-scale physical processes. The response of a GCM to perturbations in its parameters, which is crucial for quantifying uncertainties in simulations of climate change, can—in principle—be assessed by simulating the GCM many times. In practice, however, such “perturbed physics” ensembles are small because GCMs are so expensive to simulate. Statistical tools can help in two ways. First, they can be used to combine ensembles from different but related experiments, increasing the effective number of simulations. Second, they can be used to describe the GCM’s response in ways that cannot be extracted directly from the ensemble(s). The authors combine two experiments to learn about the response of the Hadley Centre Slab Climate Model version 3 (HadSM3) climate sensitivity to 31 model parameters. A Bayesian statistical framework is used in which expert judgments are required to quantify the relationship between the two experiments; these judgments are validated by detailed diagnostics. The authors identify the entrainment rate coefficient of the convection scheme as the most important single parameter and find that this interacts strongly with three of the large-scale-cloud parameters.


Sign in / Sign up

Export Citation Format

Share Document