Dependence of global monsoon response to volcanic eruptions on the background oceanic states

2021 ◽  
pp. 1-53
Author(s):  
Meng Zuo ◽  
Wenmin Man ◽  
Tianjun Zhou

AbstractBoth proxy data and climate modeling show divergent responses of global monsoon precipitation to volcanic eruptions. The reason is however unknown. Here, based on analysis of the CESM Last Millennium Ensemble simulation, we show evidences that the divergent responses are dominated by the pre-eruption background oceanic states. We found that under El Niño-Southern Oscillation (ENSO) neutral and warm phases initial conditions, the Pacific favors an El Niño-like anomaly after volcanic eruptions, while La Niña-like SST anomalies tend to occur following eruptions under ENSO cold phase initial condition, especially after southern eruptions. The cold initial condition is associated with stronger upper ocean temperature stratification and shallower thermocline over the eastern Pacific than normal. The easterly anomalies triggered by surface cooling over the tropical South America continent can generate changes in SST through anomalous advection and the ocean subsurface upwelling more efficiently, causing La Niña-like SST anomalies. Whereas under warm initial condition, the easterly anomalies fail to develop and the westerly anomalies still play a dominant role, thus forms an El Niño-like SST anomaly. Such SST response further regulates the monsoon precipitation changes through atmospheric teleconnection. The contribution of direct radiative forcing and indirect SST response to precipitation changes show regional differences, which will further affect the intensity and sign of precipitation response in submonsoon regions. Our results imply that attention should be paid to the background oceanic state when predicting the global monsoon precipitation responses to volcanic eruptions.

2021 ◽  
Author(s):  
Meng Zuo ◽  
Tianjun Zhou ◽  
Wenmin Man

<p>Both proxy data and climate modeling show divergent responses of global monsoon precipitation to volcanic eruptions. The reason is however unknown. Here, based on analysis of the CESM Last Millennium Ensemble simulation, we show evidences that the divergent responses are dominated by the pre-eruption background oceanic states. We found that under El Niño-Southern Oscillation (ENSO) neutral and warm phases initial conditions, the Pacific favors an El Niño-like anomaly after volcanic eruptions, while La Niña-like SST anomalies tend to occur following eruptions under ENSO cold phase initial condition, especially after southern eruptions. The cold initial condition is associated with stronger upper ocean temperature stratification and shallower thermocline over the eastern Pacific than normal. The easterly anomalies triggered by surface cooling over the tropical South America continent can generate changes in SST through anomalous advection and the ocean subsurface upwelling more efficiently, causing La Niña-like SST anomalies. Whereas under warm initial condition, the easterly anomalies fail to develop and the westerly anomalies still play a dominant role, thus forms an El Niño-like SST anomaly. Such SST response further regulates the monsoon precipitation changes through atmospheric teleconnection. The contribution of direct radiative forcing and indirect SST response to precipitation changes show regional differences, which will further affect the intensity and sign of precipitation response in submonsoon regions. Our results imply that attention should be paid to the background oceanic state when predicting the global monsoon precipitation responses to volcanic eruptions.</p>


2012 ◽  
Vol 25 (9) ◽  
pp. 3321-3335 ◽  
Author(s):  
Masamichi Ohba ◽  
Masahiro Watanabe

Warm and cold phases of El Niño–Southern Oscillation (ENSO) exhibit a significant asymmetry in their transition/duration such that El Niño tends to shift rapidly to La Niña after the mature phase, whereas La Niña tends to persist for up to 2 yr. The possible role of sea surface temperature (SST) anomalies in the Indian Ocean (IO) in this ENSO asymmetry is investigated using a coupled general circulation model (CGCM). Decoupled-IO experiments are conducted to assess asymmetric IO feedbacks to the ongoing ENSO evolution in the Pacific. Identical-twin forecast experiments show that a coupling of the IO extends the skillful prediction of the ENSO warm phase by about one year, which was about 8 months in the absence of the IO coupling, in which a significant drop of the prediction skill around the boreal spring (known as the spring prediction barrier) is found. The effect of IO coupling on the predictability of the Pacific SST is significantly weaker in the decay phase of La Niña. Warm IO SST anomalies associated with El Niño enhance surface easterlies over the equatorial western Pacific and hence facilitate the El Niño decay. However, this mechanism cannot be applied to cold IO SST anomalies during La Niña. The result of these CGCM experiments estimates that approximately one-half of the ENSO asymmetry arises from the phase-dependent nature of the Indo-Pacific interbasin coupling.


2018 ◽  
Vol 31 (2) ◽  
pp. 693-725 ◽  
Author(s):  
Dimitrios Giannakis ◽  
Joanna Slawinska

The coupled atmosphere–ocean variability of the Indo-Pacific domain on seasonal to multidecadal time scales is investigated in CCSM4 and in observations through nonlinear Laplacian spectral analysis (NLSA). It is found that ENSO modes and combination modes of ENSO with the annual cycle exhibit a seasonally synchronized southward shift of equatorial surface zonal winds and thermocline adjustment consistent with terminating El Niño and La Niña events. The surface winds associated with these modes also generate teleconnections between the Pacific and Indian Oceans, leading to SST anomalies characteristic of the Indian Ocean dipole. The family of NLSA ENSO modes is used to study El Niño–La Niña asymmetries, and it is found that a group of secondary ENSO modes with more rapidly decorrelating temporal patterns contributes significantly to positively skewed SST and zonal wind statistics. Besides ENSO, fundamental and combination modes representing the tropospheric biennial oscillation (TBO) are found to be consistent with mechanisms for seasonally synchronized biennial variability of the Asian–Australian monsoon and Walker circulation. On longer time scales, a multidecadal pattern referred to as the west Pacific multidecadal mode (WPMM) is established to significantly modulate ENSO and TBO activity, with periods of negative SST anomalies in the western tropical Pacific favoring stronger ENSO and TBO variability. This behavior is attributed to the fact that cold WPMM phases feature anomalous decadal westerlies in the tropical central Pacific, as well as an anomalously flat zonal thermocline profile in the equatorial Pacific. Moreover, the WPMM is found to correlate significantly with decadal precipitation over Australia.


Atmosphere ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 211 ◽  
Author(s):  
Jian Rao ◽  
Rongcai Ren ◽  
Xin Xia ◽  
Chunhua Shi ◽  
Dong Guo

Using reanalysis and the sea surface temperature (SST) analysis, the combined impact of El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) on the northern winter stratosphere is investigated. The warm and weak stratospheric polar vortex response to El Niño simply appears during positive PDO, whereas the cold and strong stratospheric polar vortex response to La Niña is preferable during negative PDO in the reanalysis. Two mechanisms may account for the enhanced stratospheric response when ENSO and PDO are in phase. First, the asymmetries of the intensity and frequency between El Niño and La Niña can be identified for the two PDO phases. Second, the extratropical SST anomalies in the North Pacific may also play a role in the varying extratropical response to ENSO. The North Pacific SST anomalies related to PDO superimpose ENSO SST anomalies when they are in phase but undermine them when they are out of phase. The superimposed North Pacific SST anomalies help to increase SST meridional gradient anomalies between tropical and extratropics, as well as to lock the local height response to ENSO. Therefore, the passages for the upward propagation of waves from the troposphere is more unimpeded when positive PDO is configured with El Niño, and vice versa when negative PDO is configured with La Niña.


Author(s):  
Swadhin Behera ◽  
Toshio Yamagata

The El Niño Modoki/La Niña Modoki (ENSO Modoki) is a newly acknowledged face of ocean-atmosphere coupled variability in the tropical Pacific Ocean. The oceanic and atmospheric conditions associated with the El Niño Modoki are different from that of canonical El Niño, which is extensively studied for its dynamics and worldwide impacts. A typical El Niño event is marked by a warm anomaly of sea surface temperature (SST) in the equatorial eastern Pacific. Because of the associated changes in the surface winds and the weakening of coastal upwelling, the coasts of South America suffer from widespread fish mortality during the event. Quite opposite of this characteristic change in the ocean condition, cold SST anomalies prevail in the eastern equatorial Pacific during the El Niño Modoki events, but with the warm anomalies intensified in the central Pacific. The boreal winter condition of 2004 is a typical example of such an event, when a tripole pattern is noticed in the SST anomalies; warm central Pacific flanked by cold eastern and western regions. The SST anomalies are coupled to a double cell in anomalous Walker circulation with rising motion in the central parts and sinking motion on both sides of the basin. This is again a different feature compared to the well-known single-cell anomalous Walker circulation during El Niños. La Niña Modoki is the opposite phase of the El Niño Modoki, when a cold central Pacific is flanked by warm anomalies on both sides.The Modoki events are seen to peak in both boreal summer and winter and hence are not seasonally phase-locked to a single seasonal cycle like El Niño/La Niña events. Because of this distinction in the seasonality, the teleconnection arising from these events will vary between the seasons as teleconnection path will vary depending on the prevailing seasonal mean conditions in the atmosphere. Moreover, the Modoki El Niño/La Niña impacts over regions such as the western coast of the United States, the Far East including Japan, Australia, and southern Africa, etc., are opposite to those of the canonical El Niño/La Niña. For example, the western coasts of the United States suffer from severe droughts during El Niño Modoki, whereas those regions are quite wet during El Niño. The influences of Modoki events are also seen in tropical cyclogenesis, stratosphere warming of the Southern Hemisphere, ocean primary productivity, river discharges, sea level variations, etc. A remarkable feature associated with Modoki events is the decadal flattening of the equatorial thermocline and weakening of zonal thermal gradient. The associated ocean-atmosphere conditions have caused frequent and persistent developments of Modoki events in recent decades.


2017 ◽  
Vol 114 (8) ◽  
pp. 1822-1826 ◽  
Author(s):  
Samantha Stevenson ◽  
John T. Fasullo ◽  
Bette L. Otto-Bliesner ◽  
Robert A. Tomas ◽  
Chaochao Gao

The response of the El Niño/Southern Oscillation (ENSO) to tropical volcanic eruptions has important worldwide implications, but remains poorly constrained. Paleoclimate records suggest an “El Niño-like” warming 1 year following major eruptions [Adams JB, Mann ME, Ammann CM (2003)Nature426:274–278] and “La Niña-like” cooling within the eruption year [Li J, et al. (2013)Nat Clim Chang3:822–826]. However, climate models currently cannot capture all these responses. Many eruption characteristics are poorly constrained, which may contribute to uncertainties in model solutions—for example, the season of eruption occurrence is often unknown and assigned arbitrarily. Here we isolate the effect of eruption season using experiments with the Community Earth System Model (CESM), varying the starting month of two large tropical eruptions. The eruption-year atmospheric circulation response is strongly seasonally dependent, with effects on European winter warming, the Intertropical Convergence Zone, and the southeast Asian monsoon. This creates substantial variations in eruption-year hydroclimate patterns, which do sometimes exhibit La Niña-like features as in the proxy record. However, eruption-year equatorial Pacific cooling is not driven by La Niña dynamics, but strictly by transient radiative cooling. In contrast, equatorial warming the following year occurs for all starting months and operates dynamically like El Niño. Proxy reconstructions confirm these results: eruption-year cooling is insignificant, whereas warming in the following year is more robust. This implies that accounting for the event season may be necessary to describe the initial response to volcanic eruptions and that climate models may be more accurately simulating volcanic influences than previously thought.


2013 ◽  
Vol 26 (13) ◽  
pp. 4816-4827 ◽  
Author(s):  
Nathaniel C. Johnson

Abstract It is now widely recognized that El Niño–Southern Oscillation (ENSO) occurs in more than one form, with the canonical eastern Pacific (EP) and more recently recognized central Pacific (CP) ENSO types receiving the most focus. Given that these various ENSO “flavors” may contribute to climate variability and long-term trends in unique ways, and that ENSO variability is not limited to these two types, this study presents a framework that treats ENSO as a continuum but determines a finite maximum number of statistically distinguishable representative ENSO patterns. A neural network–based cluster analysis called self-organizing map (SOM) analysis paired with a statistical distinguishability test determines nine unique patterns that characterize the September–February tropical Pacific SST anomaly fields for the period from 1950 through 2011. These nine patterns represent the flavors of ENSO, which include EP, CP, and mixed ENSO patterns. Over the 1950–2011 period, the most significant trends reflect changes in La Niña patterns, with a shift in dominance of La Niña–like patterns with weak or negative western Pacific warm pool SST anomalies until the mid-1970s, followed by a dominance of La Niña–like patterns with positive western Pacific warm pool SST anomalies, particularly after the mid-1990s. Both an EP and especially a CP El Niño pattern experienced positive frequency trends, but these trends are indistinguishable from natural variability. Overall, changes in frequency within the ENSO continuum contributed to the pattern of tropical Pacific warming, particularly in the equatorial eastern Pacific and especially in relation to changes of La Niña–like rather than El Niño–like patterns.


2000 ◽  
Vol 30 (2) ◽  
pp. 305-318 ◽  
Author(s):  
Everaldo B de SOUZA ◽  
Mary T KAYANO ◽  
Julio TOTA ◽  
Luciano PEZZI ◽  
Gilberto FISCH ◽  
...  

The influence of the large-scale climatic variability dominant modes in the Pacific and in the Atlantic on Amazonian rainfall is investigated. The composite technique of the Amazon precipitation anomalies is used in this work. The basis years for these composites arc those in the period 1960-1998 with occurrences of extremes in the Southern Oscillation (El Niño or La Niña) and the north/south warm (or cold) sea surface temperature (SST) anomalies dipole pattern in the tropical Atlantic. Warm (cold) dipole means positive (negative) anomalies in the tropical North Atlantic and negative (positive) anomalies in the tropical South Atlantic. Austral summer and autumn composites for extremes in the Southern Oscillation (El Niño or La Niña) and independently for north/south dipole pattern (warm or cold) of the SST anomalies in the tropical Atlantic present values (magnitude and sign) consistent with those found in previous works on the relationship between Amazon rainfall variations and the SST anomalies in the tropical Pacific and Atlantic. However, austral summer and autumn composites for the years with simultaneous occurrences of El Niño and warm north/south dipole of the SST anomalies in the tropical Atlantic show negative precipitation anomalies extending eastward over the center-eastern Amazon. This result indicates the important role played by the tropical Atlantic in the Amazon anomalous rainfall distribution.


2005 ◽  
Vol 18 (16) ◽  
pp. 3373-3387 ◽  
Author(s):  
Buwen Dong

Abstract Observations show the asymmetric nature of El Niño and La Niña sea surface temperature (SST) anomalies. Warm events are often stronger than cold events. This asymmetric behavior is an important feature that can be used to validate coupled models to test their ability to represent the climate system. The asymmetry of El Niño and La Niña SST anomalies has been investigated in a simulation of the Hadley Centre eddy-permitting coupled general circulation model. It is found that the asymmetric behavior is captured by the model with SST anomalies associated with strong El Niño events being greater than those associated with strong La Niña events. The pattern of the SST asymmetry also bears some similar characteristics to those based on observations despite the deficiency that SST anomalies associated with both El Niño and La Niña extend too far westward in the model. Through a heat budget analysis of the ocean mixed layer, it is shown that nonlinear dynamic heating (NDH) is important in generating intense El Niño and the SST asymmetry between El Niño and La Niña events, especially in the eastern tropical Pacific Ocean. This nonlinear dynamic heating enhances the amplitude of El Niño and reduces the amplitude of La Niña, and therefore leads to the asymmetry between El Niño and La Niña events, with El Niño being stronger. However, the skewness and asymmetry in the model are relatively weak, being consistent with a relatively weak nonlinear dynamical heating. It is also shown that the eastward-propagating feature of subsurface anomalies provides a favorable phase relationship between temperature and current anomalies that results in strong nonlinear dynamical heating that tends to produce stronger El Niños. In addition, in the model simulation, the nonlinear nature of zonal wind stress anomalies between El Niño and La Niña events also plays an important role in the central tropical Pacific. These different mechanisms work constructively to determine the asymmetry between El Niño and La Niña events in the model, and they are similar to those proposed in recent studies based on observations. The ability of the model to simulate this asymmetric feature is encouraging and offers hope to the challenge of predicting the amplitude of strong El Niño events.


Sign in / Sign up

Export Citation Format

Share Document