Dependence of global monsoon response to volcanic eruptions on the background oceanic states

Author(s):  
Meng Zuo ◽  
Tianjun Zhou ◽  
Wenmin Man

<p>Both proxy data and climate modeling show divergent responses of global monsoon precipitation to volcanic eruptions. The reason is however unknown. Here, based on analysis of the CESM Last Millennium Ensemble simulation, we show evidences that the divergent responses are dominated by the pre-eruption background oceanic states. We found that under El Niño-Southern Oscillation (ENSO) neutral and warm phases initial conditions, the Pacific favors an El Niño-like anomaly after volcanic eruptions, while La Niña-like SST anomalies tend to occur following eruptions under ENSO cold phase initial condition, especially after southern eruptions. The cold initial condition is associated with stronger upper ocean temperature stratification and shallower thermocline over the eastern Pacific than normal. The easterly anomalies triggered by surface cooling over the tropical South America continent can generate changes in SST through anomalous advection and the ocean subsurface upwelling more efficiently, causing La Niña-like SST anomalies. Whereas under warm initial condition, the easterly anomalies fail to develop and the westerly anomalies still play a dominant role, thus forms an El Niño-like SST anomaly. Such SST response further regulates the monsoon precipitation changes through atmospheric teleconnection. The contribution of direct radiative forcing and indirect SST response to precipitation changes show regional differences, which will further affect the intensity and sign of precipitation response in submonsoon regions. Our results imply that attention should be paid to the background oceanic state when predicting the global monsoon precipitation responses to volcanic eruptions.</p>

2021 ◽  
pp. 1-53
Author(s):  
Meng Zuo ◽  
Wenmin Man ◽  
Tianjun Zhou

AbstractBoth proxy data and climate modeling show divergent responses of global monsoon precipitation to volcanic eruptions. The reason is however unknown. Here, based on analysis of the CESM Last Millennium Ensemble simulation, we show evidences that the divergent responses are dominated by the pre-eruption background oceanic states. We found that under El Niño-Southern Oscillation (ENSO) neutral and warm phases initial conditions, the Pacific favors an El Niño-like anomaly after volcanic eruptions, while La Niña-like SST anomalies tend to occur following eruptions under ENSO cold phase initial condition, especially after southern eruptions. The cold initial condition is associated with stronger upper ocean temperature stratification and shallower thermocline over the eastern Pacific than normal. The easterly anomalies triggered by surface cooling over the tropical South America continent can generate changes in SST through anomalous advection and the ocean subsurface upwelling more efficiently, causing La Niña-like SST anomalies. Whereas under warm initial condition, the easterly anomalies fail to develop and the westerly anomalies still play a dominant role, thus forms an El Niño-like SST anomaly. Such SST response further regulates the monsoon precipitation changes through atmospheric teleconnection. The contribution of direct radiative forcing and indirect SST response to precipitation changes show regional differences, which will further affect the intensity and sign of precipitation response in submonsoon regions. Our results imply that attention should be paid to the background oceanic state when predicting the global monsoon precipitation responses to volcanic eruptions.


2020 ◽  
Author(s):  
Francesco S.R. Pausata ◽  
Davide Zanchettin ◽  
Christina Karamperidou ◽  
Rodrigo Caballero ◽  
David S. Battisti

<p>The mechanisms through which volcanic eruptions impact the El Niño-Southern Oscillation (ENSO) state are still controversial. Previous studies have invoked direct radiative forcing, an ocean dynamical thermostat (ODT) mechanism and shifts of the Intertropical Convergence Zone (ITCZ), among others, to explain the ENSO response to tropical eruptions. Here, these mechanisms are tested using ensemble simulations with an Earth System Model in which volcanic aerosols from a Tambora-like eruption are confined either in the Northern or the Southern Hemisphere. We show that the primary drivers of the ENSO response are the shifts of the ITCZ together with extratropical circulation changes, which affect the tropics; the ODT mechanism does not operate in our simulations. Our study highlights the importance of initial conditions in the ENSO response to tropical volcanic eruptions and provides explanations for the predominance of post-eruption El Niño events and for the occasional post-eruption La Niña in observations and reconstructions.</p>


2020 ◽  
Author(s):  
Evgeniya Predybaylo ◽  
Georgiy Stenchikov ◽  
Andrew Wittenberg ◽  
Sergey Osipov

<p>To improve El Niño / Southern Oscillation (ENSO) predictions and projections in a changing climate, it is essential to better understand ENSO’s sensitivities to external radiative forcings. Strong volcanic eruptions can help to clarify ENSO’s sensitivities, mechanisms, and feedbacks. Strong explosive volcanic eruptions inject millions of tons of sulfur dioxide into the stratosphere, where they are converted into sulfate aerosols. For equatorial volcanoes, these aerosols can spread globally, scattering and absorbing incoming sunlight, and inducing a global-mean surface cooling. Despite this global-mean cooling effect, paleo data confirm remarkable warming of the eastern equatorial Pacific in the two years after a tropical eruption, with a shift towards an El Niño-like state. To illuminate this response and explain why it tends to occur during particular seasons and ENSO phases, we present a unified framework that includes the roles of the seasonal cycle, stochastic wind forcing, eruption magnitude, and various tropical Pacific climate feedbacks. Analyzing over 20,000 years of large-ensemble simulations from the GFDL-CM2.1 climate model forced by volcanic eruptions, we find that the ENSO response comprises both stochastic and deterministic components, which vary depending on the perturbation season and the ocean preconditioning. For boreal winter eruptions, stochastic dispersion largely obscures the deterministic response, being the largest for the strong El Niño preconditioning. Deterministic El Niño-like responses to summer eruptions are well seen on neutral ENSO and weak to moderate El Niño preconditioning and grow with the eruption magnitude. The relative balance of these components determines the predictability and strength of the ENSO response. The results clarify why previous studies obtained seemingly conflicting results.</p>


2020 ◽  
Vol 6 (23) ◽  
pp. eaaz5006
Author(s):  
Francesco S. R. Pausata ◽  
Davide Zanchettin ◽  
Christina Karamperidou ◽  
Rodrigo Caballero ◽  
David S. Battisti

The mechanisms through which volcanic eruptions affect the El Niño–Southern Oscillation (ENSO) state are still controversial. Previous studies have invoked direct radiative forcing, an ocean dynamical thermostat (ODT) mechanism, and shifts of the Intertropical Convergence Zone (ITCZ), among others, to explain the ENSO response to tropical eruptions. Here, these mechanisms are tested using ensemble simulations with an Earth system model in which volcanic aerosols from a Tambora-like eruption are confined either in the Northern or the Southern Hemisphere. We show that the primary drivers of the ENSO response are the shifts of the ITCZ together with extratropical circulation changes, which affect the tropics; the ODT mechanism does not operate in our simulations. Our study highlights the importance of initial conditions in the ENSO response to tropical volcanic eruptions and provides explanations for the predominance of posteruption El Niño events and for the occasional posteruption La Niña in observations and reconstructions.


2016 ◽  
Vol 29 (8) ◽  
pp. 2907-2921 ◽  
Author(s):  
Samantha Stevenson ◽  
Bette Otto-Bliesner ◽  
John Fasullo ◽  
Esther Brady

Abstract The hydroclimate response to volcanic eruptions depends both on volcanically induced changes to the hydrologic cycle and on teleconnections with the El Niño–Southern Oscillation (ENSO), complicating the interpretation of offsets between proxy reconstructions and model output. Here, these effects are separated, using the Community Earth System Model Last Millennium Ensemble (CESM-LME), by examination of ensemble realizations with distinct posteruption ENSO responses. Hydroclimate anomalies in monsoon Asia and the western United States resemble the El Niño teleconnection pattern after “Tropical” and “Northern” eruptions, even when ENSO-neutral conditions are present. This pattern results from Northern Hemisphere (NH) surface cooling, which shifts the intertropical convergence zone equatorward, intensifies the NH subtropical jet, and suppresses the Southeast Asian monsoon. El Niño events following an eruption can then intensify the ENSO-neutral hydroclimate signature, and El Niño probability is enhanced two boreal winters following all eruption types. Additionally, the eruption-year ENSO response to eruptions is hemispherically dependent: the winter following a Northern eruption tends toward El Niño, while Southern volcanoes enhance the probability of La Niña events and Tropical eruptions have a very slight cooling effect. Overall, eruption-year hydroclimate anomalies in CESM disagree with the proxy record in both Southeast Asia and North America, suggesting that model monsoon representation cannot be solely responsible. Possible explanations include issues with the model ENSO response, the spatial or temporal structure of volcanic aerosol distribution, or data uncertainties.


2020 ◽  
pp. 1-51
Author(s):  
Sara C. Sanchez ◽  
Gregory J. Hakim ◽  
Casey P. Saenger

AbstractScientific understanding of low-frequency tropical Pacific variability, especially responses to perturbations in radiative forcing, suffers from short observational records, sparse proxy networks, and bias in model simulations. Here, we combine the strengths of proxies and models through coral-based paleoclimate data assimilation. We combine coral archives (δ18O, Sr/Ca) with the dynamics, spatial teleconnections, and intervariable relationships of the CMIP5/PMIP3 Past1000 experiments using the Last Millennium Reanalysis data assimilation framework. This analysis creates skillful reconstructions of tropical Pacific temperatures over the observational era. However, during the period of intense volcanism in the early 19th century, southwestern Pacific corals produce El Niño Southern Oscillation (ENSO) reconstructions that are of opposite sign from those from eastern Pacific corals and tree ring records. We systematically evaluate the source of this discrepancy using 1) single-proxy experiments, 2) varied proxy system models (PSMs), and 3) diverse covariance patterns from the Past1000 simulations. We find that individual proxy records and coral PSMs do not significantly contribute to the discrepancy. However, following major eruptions, the southwestern Pacific corals locally record more persistent cold anomalies than found in the Past1000 experiments and canonical ENSO teleconnections to the southwest Pacific strongly control the reconstruction response. Furthermore, using covariance patterns independent of ENSO yield reconstructions consistent with coral archives across the Pacific. These results show that model bias can strongly affect how proxy information is processed in paleoclimate data assimilation. As we illustrate here, model bias influences the magnitude and persistence of the response of the tropical Pacific to volcanic eruptions.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Fei Liu ◽  
Jing Chai ◽  
Bin Wang ◽  
Jian Liu ◽  
Xiao Zhang ◽  
...  

2021 ◽  
Author(s):  
Manmeet Singh ◽  
Raghavan Krishnan ◽  
Bedartha Goswami ◽  
Ayantika Dey Choudhury ◽  
Swapna Panickal ◽  
...  

<p>The coupling between the El Niño–Southern Oscillation (ENSO) and Indian Monsoon (IM) plays a significant role in the summer rainfall over the Indian subcontinent. In this study, we provide insights into the IM variability with regard to the degree of ENSO variability and radiative forcing from large volcanic eruptions (LVEs). Volcanic dust and gas injected into the stratosphere during major eruptions influence the ENSO from seasonal to interannual timescales. However, the effects of LVEs on the ENSO-IM coupling remain unclear. The relationship between ENSO and IM systems in the context of LVEs is examined using a panoply of datasets and advanced statistical analysis techniques in this study. We find that there is a significant enhancement of the phase-synchronization between ENSO and IM oscillations due to increase in angular frequency of ENSO in the last millennium. Twin surrogates-based statistical significance testing is also used to affirm this result and similar evidence is found in the combinations of 14 ENSO and 11 IM paleoclimate proxy records in the last millennium. Bayesian probabilities conditioned with and without LVEs show LVEs lead to a strong ENSO-IM phase-coupling, with the probabilities remaining higher till the fourth year from the eruption. A large-ensemble climate model experiment with and without the 1883 Krakatoa eruption is conducted using the IITM-ESM, and also with varied volcanic radiative forcing (VRF) depending on the evolved state of ENSO. The simulations show that LVEs force the ENSO-IM systems into a coupled state, and increase (decrease) in the VRF leads to an enhanced (decreased) probability of the phase synchronisation of ENSO-IM systems with a high chance of El Niño-IM drought in the year following the LVE. Our results promisingly pave a way not only for improving the seasonal monsoon prediction improvements but also for the regional impact assessment from the proposed geo-engineering activities over the South Asian region.</p>


2021 ◽  
Author(s):  
Michael Sigl ◽  
Florian Adolphi ◽  
Andrea Burke ◽  
Jihong Cole-Dai ◽  
Hubertus Fischer ◽  
...  

<p>Extratropical volcanic eruptions are commonly thought to be less effective at driving large-scale surface cooling than tropical eruptions, and only the latter are commonly thought to be able to distribute sulfate globally. Here, we test both of these assumptions using a network of ice cores from the polar regions of Antarctica and Greenland covering the past 15’000 years and climate-aerosol modeling. We employ state-of-the-art analyses of trace elements, cryptoptephra and sulphur isotopes (Burke et al., 2019) to gain new insights into the timing of past eruptions, their stratospheric sulphur mass injections and subsequent sulphate aerosol lifecycle. We use this information to estimate the climate impact potential due to negative radiative forcing caused by Earth’s largest volcanic eruptions since the last Glacial. Our analysis encompasses over 1’000 eruptions and include the caldera-forming eruptions of Okmok II (Alaska, 43 BCE, VEI=6, 53°N; McConnell et al., 2020), Aniakchak II (Alaska, 1600s BCE, VEI=6, 57°N), Crater Lake (Mazama, Oregon, 5600s BCE, VEI=7, 43°N) and Laacher See (Germany, c. 13 ka BP, VEI=6, 50°N).</p><p>We use our reconstructed radiative forcing and the coupled earth system models MPI-ESM1.2 and CESM (version 1.2.2) to analyze the climatic impact caused by these eruptions and compare the simulated temperature response with temperature reconstructions based on ultra-long tree-ring chronologies. Finally, based on these comparisons, we propose a number of stratigraphic age tie-points to anchor ice-core chronologies from Greenland (GICC05) and Antarctica (WD2014) to the absolute dated tree-ring chronology. We thereby aim to improve proxy synchronization throughout the Holocene -- a prerequisite for detection and attribution studies -- and invite the paleo-climate community to update climate proxy records based on ice cores to the latest chronologies.    </p><p>The European Research Council Grant 820047 under the European Union’s Horizon 2020 research and innovation program funded the research project THERA - Timing of Holocene Volcanic eruptions and their radiative aerosol forcing. </p><p><strong> </strong></p><p><strong>References:</strong></p><p>Burke, A., Moore, K. A., Sigl, M., Nita, D. C., McConnell, J. R., and Adkins, J. F.: Stratospheric eruptions from tropical and extra-tropical volcanoes constrained using high-resolution sulfur isotopes in ice cores, <em>Earth Planet Sc Lett</em>, 521, 113-119, 2019.</p><p>McConnell, J. R., Sigl, M., Plunkett, G., Burke, A., Kim, W., Raible, C. C., Wilson, A. I., Manning, J. G., Ludlow, F. M., Chellman, N. J., Innes, H. M., Yang, Z., Larsen, J. F., Schaefer, J. R., Kipfstuhl, S., Mojtabavi, S., Wilhelms, F., Opel, T., Meyer, H., and Steffensen, J. P.: Extreme climate after massive eruption of Alaska’s Okmok volcano in 43 BCE and effects on the late Roman Republic and Ptolemaic Kingdom, <em>Proceedings of the National Academy of Sciences</em>, 117, 15443-15449, 2020.</p>


2013 ◽  
Vol 26 (14) ◽  
pp. 5169-5182 ◽  
Author(s):  
Masamichi Ohba ◽  
Hideo Shiogama ◽  
Tokuta Yokohata ◽  
Masahiro Watanabe

Abstract The impact of strong tropical volcanic eruptions (SVEs) on the El Niño–Southern Oscillation (ENSO) and its phase dependency is investigated using a coupled general circulation model (CGCM). This paper investigates the response of ENSO to an idealized SVE forcing, producing a peak perturbation of global-mean surface shortwave radiation larger than −6.5 W m−2. Radiative forcing due to volcanic aerosols injected into the stratosphere induces tropical surface cooling around the volcanic forcing peak. Identical-twin forecast experiments of an ENSO-neutral year in response to an SVE forcing show an El Niño–like warming lagging one year behind the peak forcing. In addition to a reduced role of the mean subsurface water upwelling (known as the dynamical thermostat mechanism), the rapid land surface cooling around the Maritime Continent weakens the equatorial Walker circulation, contributing to the positive zonal gradient of sea surface temperature (SST) and precipitation anomalies over the equatorial Pacific. Since the warm and cold phases of ENSO exhibit significant asymmetry in their transition and duration, the impact of a SVE forcing on El Niño and La Niña is also investigated. In the warm phase of ENSO, the prediction skill of the SVE-forced experiments rapidly drops approximately six months after the volcanic peak. Since the SVE significantly facilitates the duration of El Niño, the following transition from warm to cold ENSO is disrupted. The impact of SVE forcing on La Niña is, however, relatively weak. These results imply that the intensity of a dynamical thermostat-like response to a SVE could be dependent on the phase of ENSO.


Sign in / Sign up

Export Citation Format

Share Document