scholarly journals An Impact of SST Anomalies in the Indian Ocean in Acceleration of the El Niño to La Niña Transition

2007 ◽  
Vol 85 (3) ◽  
pp. 335-348 ◽  
Author(s):  
Masamichi OHBA ◽  
Hiroaki UEDA
2017 ◽  
Vol 30 (7) ◽  
pp. 2601-2620 ◽  
Author(s):  
Claudia E. Wieners ◽  
Henk A. Dijkstra ◽  
Will P. M. de Ruijter

The effect of long-term trends and interannual, ENSO-driven variability in the Indian Ocean (IO) on the stability and spatial pattern of ENSO is investigated with an intermediate-complexity two-basin model. The Pacific basin is modeled using a fully coupled (i.e., generating its own background state) Zebiak–Cane model. IO sea surface temperature (SST) is represented by a basinwide warming pattern whose strength is constant or varies at a prescribed lag to ENSO. Both basins are coupled through an atmosphere transferring information between them. For the covarying IO SST, a warm IO during the peak of El Niño (La Niña) dampens (destabilizes) ENSO, and a warm IO during the transition from El Niño to La Niña (La Niña to El Niño) shortens (lengthens) the period. The influence of the IO on the spatial pattern of ENSO is small. For constant IO warming, the ENSO cycle is destabilized because stronger easterlies induce more background upwelling, more thermocline steepening, and a stronger Bjerknes feedback. The SST signal at the east coast weakens or reverses sign with respect to the main ENSO signal [i.e., ENSO resembles central Pacific (CP) El Niños]. This is due to a reduced sensitivity of the SST to thermocline variations in case of a shallow background thermocline, as found near the east coast for a warm IO. With these results, the recent increase in CP El Niño can possibly be explained by the substantial IO (and west Pacific) warming over the last decades.


2007 ◽  
Vol 20 (1) ◽  
pp. 38-52 ◽  
Author(s):  
Motoki Nagura ◽  
Masanori Konda

Abstract The seasonal development of the sea surface temperature (SST) anomaly in the Indian Ocean is investigated in relation to El Niño–Southern Oscillation (ENSO), using NOAA optimally interpolated SST and NCEP reanalysis data. The result shows that the onset season of El Niño affects the seasonal development of surface wind anomalies over the equatorial eastern Indian Ocean (EEIO); these surface wind anomalies, in turn, determine whether the SST anomaly in the EEIO evolves into the eastern pole of the dipole pattern. In years when the dipole pattern develops, surface zonal wind anomalies over the EEIO switch from westerly to easterly in spring as La Niña switches to El Niño. The seasonal zonal wind over the EEIO also switches from westerly to easterly in spring, and the anomalous wind strengthens seasonal wind from winter to summer. Stronger winds and resultant thermal forcings produce the negative SST anomaly in the EEIO in winter, and its amplitude increases in summer. The SST anomaly becomes the eastern pole of the dipole pattern in fall. In contrast, if the change from La Niña to El Niño is delayed until late summer/fall or if La Niña persists throughout the year, a westerly anomaly persists from winter to summer over the EEIO. The persistent westerly anomaly strengthens the wintertime climatological westerlies and weakens the summertime easterlies. Therefore, negative SST anomalies are produced in the EEIO in winter, but the amplitude decreases in summer, and the eastern pole is not present in fall. The above explanation also applies to onset years of La Niña if the signs of the anomalies are reversed.


2011 ◽  
Vol 24 (17) ◽  
pp. 4676-4694 ◽  
Author(s):  
Scott J. Weaver ◽  
Wanqiu Wang ◽  
Mingyue Chen ◽  
Arun Kumar

The Madden–Julian oscillation (MJO) is arguably the most important intraseasonal mode of climate variability, given its significant modulation of global climate variations and attendant societal impacts. Advancing the current understanding and simulation of the MJO using state-of-the-art climate data and modeling systems is thus a necessary goal for improving MJO prediction capability. MJO variability is assessed in NOAA/NCEP reanalyses and two versions of the Climate Forecast System (CFS), CFS version 1 (CFSv1) and its update version 2 (CFSv2). The analysis leans on a variety of diagnostic procedures and includes MJO sensitivity to varying El Niño–Southern Oscillation (ENSO) phases. It is found that significant improvements have been realized in the representation of MJO variations in the new NCEP Climate Forecast System reanalysis (CFSR) as evidenced by outgoing longwave radiation (OLR) power spectral analysis and more coherent propagation characteristics of precipitation and 850-hPa zonal winds over the Eastern Hemisphere in CFSR-only depictions. Conversely, while modest improvements are realized in the CFSv2 as compared to CFSv1, in general the simulation of the MJO continues to be a challenge. Both versions produce strong eastward propagating variance of convection and wind fields in the intraseasonal frequency band. However, the simulated MJO propagates slower than the observed with difficulties traversing the Maritime Continent into the western Pacific, as noted in many previous modeling studies. The CFS shows robust intraseasonal simulations over the west Pacific during El Niño years with diminished simulation capability over the Indian Ocean during La Niña years. This is likely a manifestation of the preference for La Niña MJO activity to occur over the Indian Ocean and the simulation challenges over that domain.


2006 ◽  
Vol 19 (9) ◽  
pp. 1784-1801 ◽  
Author(s):  
Jong-Seong Kug ◽  
In-Sik Kang

Abstract A feedback process of the Indian Ocean SST on ENSO is investigated by using observed data and atmospheric GCM. It is suggested that warming in the Indian Ocean produces an easterly wind stress anomaly over Indonesia and the western edge of the Pacific during the mature phase of El Niño. The anomalous easterly wind in the western Pacific during El Niño helps a rapid termination of El Niño and a fast transition to La Niña by generating upwelling Kelvin waves. Thus, warming in the Indian Ocean, which is a part of the El Niño signal, operates as a negative feedback mechanism to ENSO. This Indian Ocean feedback appears to operate mostly for relatively strong El Niños and results in a La Niña one year after the mature phase of the El Niño. This 1-yr period of phase transition implies a possible role of Indian Ocean–ENSO coupling in the biennial tendency of the ENSO. Atmospheric GCM experiments show that Indian Ocean SST forcing is mostly responsible for the easterly wind anomalies in the western Pacific.


2015 ◽  
Vol 28 (4) ◽  
pp. 1383-1395 ◽  
Author(s):  
Riyu Lu ◽  
Shu Lu

Abstract The summer precipitation anomalies over the tropical western North Pacific (WNP), which greatly affect East Asian climate, are closely related to Indian Ocean (IO) SST anomalies, and this WNP–IO relationship is widely assumed to be linear. This study indicates that the IO SST–WNP precipitation relationship is generally linear only when the IO SST anomalies are positive and not when the IO SST anomalies are negative, that is, a strongly cooler IO, in comparison with a moderately cooler IO, does not correspond to stronger precipitation enhancement over the WNP. Further analysis suggests that the phases of ENSO play a crucial role in modifying the impacts of IO SSTs on WNP anomalies. The reverse IO SST–WNP precipitation relationship, which exists without apparent ENSO development/decay, is intensified by El Niño decay through the enhancement of IO SST anomalies, but weakened by El Niño development and La Niña decay through the concurrence of SST anomalies in the tropical central and eastern Pacific. After removing El Niño developing and La Niña decaying cases, the IO SST and WNP precipitation anomalies show a clear linear relationship. Because of the effects of the phases of ENSO, the years of negative precipitation or anticyclonic anomalies over the WNP are highly concentrated over strongly warmer IO and El Niño decaying years, which is consistent with previous studies. However, the years of positive precipitation anomalies are scattered over cooler IO and moderately warmer IO years, implying a complexity of tropical SST forcing on positive WNP precipitation anomalies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xinqiang Xu ◽  
Lei Wang ◽  
Weidong Yu

AbstractThe interannual variability of the sea surface temperature (SST) in the Indian Ocean is complex and characterized by various air-sea coupled modes, which occur around El Niño/La Niña's peak phase (i.e. December–January–February, DJF). Indian Ocean Dipole Mode (IODM) develops over the tropical Indian Ocean and peaks in September–October–November (SON), while Ningaloo Niño, Subtropical Indian Ocean Dipole (SIOD) and Indian Ocean Basin Mode (IOBM) occur respectively over northwest off Australia, subtropical and tropical Indian Ocean, during boreal winter to spring. The apparent contrast between their divergent regionality and convergent seasonality around DJF triggers the present study to examine the interaction between the local mean monsoonal cycle and the anomalous forcing from El Niño/La Niña. The diagnosis confirms that the Indian Ocean’s unique complexity, including the monsoonal circulation over the tropics and the trade wind over the subtropical southern Indian Ocean, plays the fundamental role in anchoring the various regional air-sea coupled modes across the basin. The SST anomalies can be readily explained by the wind-evaporation-SST (WES) mechanism, which works together with other more regional-dependent dynamic and thermodynamic mechanisms. This implies that El Niño/La Niña brings much predictability for the Indian Ocean variations.


2007 ◽  
Vol 20 (13) ◽  
pp. 2978-2993 ◽  
Author(s):  
Tommy G. Jensen

Abstract Composites of Florida State University winds (1970–99) for four different climate scenarios are used to force an Indian Ocean model. In addition to the mean climatology, the cases include La Niña, El Niño, and the Indian Ocean dipole (IOD). The differences in upper-ocean water mass exchanges between the Arabian Sea and the Bay of Bengal are investigated and show that, during El Niño and IOD years, the average clockwise Indian Ocean circulation is intensified, while it is weakened during La Niña years. As a consequence, high-salinity water export from the Arabian Sea into the Bay of Bengal is enhanced during El Niño and IOD years, while transport of low-salinity waters from the Bay of Bengal into the Arabian Sea is enhanced during La Niña years. This provides a venue for interannual salinity variations in the northern Indian Ocean.


2012 ◽  
Vol 25 (9) ◽  
pp. 3321-3335 ◽  
Author(s):  
Masamichi Ohba ◽  
Masahiro Watanabe

Warm and cold phases of El Niño–Southern Oscillation (ENSO) exhibit a significant asymmetry in their transition/duration such that El Niño tends to shift rapidly to La Niña after the mature phase, whereas La Niña tends to persist for up to 2 yr. The possible role of sea surface temperature (SST) anomalies in the Indian Ocean (IO) in this ENSO asymmetry is investigated using a coupled general circulation model (CGCM). Decoupled-IO experiments are conducted to assess asymmetric IO feedbacks to the ongoing ENSO evolution in the Pacific. Identical-twin forecast experiments show that a coupling of the IO extends the skillful prediction of the ENSO warm phase by about one year, which was about 8 months in the absence of the IO coupling, in which a significant drop of the prediction skill around the boreal spring (known as the spring prediction barrier) is found. The effect of IO coupling on the predictability of the Pacific SST is significantly weaker in the decay phase of La Niña. Warm IO SST anomalies associated with El Niño enhance surface easterlies over the equatorial western Pacific and hence facilitate the El Niño decay. However, this mechanism cannot be applied to cold IO SST anomalies during La Niña. The result of these CGCM experiments estimates that approximately one-half of the ENSO asymmetry arises from the phase-dependent nature of the Indo-Pacific interbasin coupling.


Sign in / Sign up

Export Citation Format

Share Document