scholarly journals Three types of positive Indian Ocean dipoles and their relationships with the South Asian summer monsoon

2021 ◽  
pp. 1-67
Author(s):  
Jilan Jiang ◽  
Yimin Liu ◽  
Jiangyu Mao ◽  
Jianping Li ◽  
Shuwen Zhao ◽  
...  

AbstractThe relationship between the Indian Ocean dipole (IOD) and the South Asian summer monsoon (SASM), which remains a subject of controversy, was investigated using data analyses and numerical experiments. We categorized IOD events according to their sea surface temperature anomaly (SSTA) pattern: Type-W and Type-E are associated with stronger SSTA amplitudes in the western and eastern poles of the IOD, respectively, while Type-C has comparable SSTA amplitudes in both poles during boreal autumn. Type-W is associated with a weak SASM from May to summer, which contributes to substantial warming of the western pole in autumn; the east–west SST gradient linked to the warming of the western pole causes weak southeasterly wind anomalies off Sumatra and feeble and cold SSTAs in the eastern pole during the mature phase. Type-E is associated with a strong SASM and feeble warming of the western pole; interaction between the strong SASM and cold SSTAs in the eastern pole in summer results in strong southeasterly wind anomalies off Sumatra and substantial cooling of the eastern pole during the mature phase. For Type-C, warming of the western pole and cooling of the eastern pole develop synchronously without apparent SASM anomalies, and reach comparable intensities during the mature phase. Observations and numerical simulation results both indicate the role of disparate SASM anomalies in modulating SSTA patterns during the development of positive IODs. Warming of the tropical Indian Ocean becomes established in the winter and spring following Type-W and Type-C IODs, but not following Type-E events.

2021 ◽  
pp. 1-40
Author(s):  
Dipanjan Dey ◽  
Kristofer Döös

AbstractThe water sources and their variability responsible for the South Asian summer monsoon precipitation were analyzed using Lagrangian atmospheric water-mass trajectories. The results indicated that evaporated waters from the Central and South Indian Ocean are the major contributors to the South Asian summer monsoon rainfall, followed by the contribution from the local recycling (precipitated water that evapotranspirated from the South Asian landmass), the Arabian Sea, remote sources and the Bay of Bengal. It was also found that although the direct contribution originating from the Bay of Bengal is small, it still provides a pathway for the atmospheric water that come from other regions. This pathway is hence only crossing over the Bay of Bengal. The outcomes further revealed that the evaporated waters originating from the Central and South Indian Ocean are responsible for the net precipitation over the coastal regions of the Ganges-Brahmaputra-Meghna Delta, Northeast India, Myanmar, the foothills of the Himalayas and Central-East India. Evaporated waters from the Arabian sea are mainly contributing to the rainfall over the Western coast and West-Central India. Summer monsoon precipitation due to the local recycling is primarily restricted to the Indo-Gangetic plain. No recycled precipitation was observed over the mountain chain along the West coast of India (Western Ghats). The month-to-month precipitation variation over South Asia was analysed to be linked with the Somali Low Level jet variability. The inter-annual variability of the South Asian summer monsoon precipitation was found to be mainly controlled by the atmospheric waters that were sourced and travelled from the Central and South Indian Ocean.


2015 ◽  
Vol 15 (5) ◽  
pp. 6967-7018 ◽  
Author(s):  
A. Rauthe-Schöch ◽  
A. K. Baker ◽  
T. J. Schuck ◽  
C. A. M. Brenninkmeijer ◽  
A. Zahn ◽  
...  

Abstract. The CARIBIC (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container) passenger aircraft observatory performed in situ measurements at 10–12 km altitude in the South Asian summer monsoon anticyclone between June and September 2008. These measurements enable us to investigate this atmospheric region, which so far has mostly been observed from satellites, using the broad suite of trace gases and aerosols measured by CARIBIC. Elevated levels of a range of atmospheric pollutants were recorded e.g. carbon monoxide, total reactive nitrogen oxides, aerosol particles and several volatile organic compounds. The measurements provide detailed information about the chemical composition of air in different parts of the monsoon anticyclone, particularly of ozone precursors. While covering a range of 3500 km inside the monsoon anticyclone, CARIBIC observations show remarkable consistency, i.e. with regular latitudinal patterns of trace gases during the entire monsoon period. Trajectory calculations indicate that these air masses originated mainly from South Asia and Mainland Southeast Asia. Using the CARIBIC trace gas and aerosol measurements in combination with the Lagrangian particle dispersion model FLEXPART we investigated the characteristics of monsoon outflow and the chemical evolution of air masses during transport. Estimated photochemical ages of the air were found to agree well with transport times from a source region east of 95° E. The photochemical ages of the air in the southern part of the monsoon anticyclone were consistently younger (less than 7 days) and the air masses mostly in an ozone forming chemical regime. In its northern part the air masses were older (up to 13 days) and had unclear ozone formation or destruction potential. Based on analysis of forward trajectories several receptor regions were identified. In addition to predominantly westward transport, we found evidence for efficient transport (within 10 days) to the Pacific and North America, particularly during June and September, and also of cross-tropopause exchange, which was strongest during June and July. Westward transport to Africa and further to the Mediterranean was the main pathway during July.


2019 ◽  
Vol 46 (8) ◽  
pp. 4476-4484
Author(s):  
Ding Ma ◽  
Adam H. Sobel ◽  
Zhiming Kuang ◽  
Martin S. Singh ◽  
Ji Nie

2015 ◽  
Vol 28 (9) ◽  
pp. 3731-3750 ◽  
Author(s):  
Jennifer M. Walker ◽  
Simona Bordoni ◽  
Tapio Schneider

Abstract This study identifies coherent and robust large-scale atmospheric patterns of interannual variability of the South Asian summer monsoon (SASM) in observational data. A decomposition of the water vapor budget into dynamic and thermodynamic components shows that interannual variability of SASM net precipitation (P − E) is primarily caused by variations in winds rather than in moisture. Linear regression analyses reveal that strong monsoons are distinguished from weak monsoons by a northward expansion of the cross-equatorial monsoonal circulation, with increased precipitation in the ascending branch. Interestingly, and in disagreement with the view of monsoons as large-scale sea-breeze circulations, strong monsoons are associated with a decreased meridional gradient in the near-surface atmospheric temperature in the SASM region. Teleconnections exist from the SASM region to the Southern Hemisphere, whose midlatitude poleward eddy energy flux correlates with monsoon strength. Possible implications of these teleconnection patterns for understanding SASM interannual variability are discussed.


Sign in / Sign up

Export Citation Format

Share Document