A cyclone-centered perspective on the drivers of asymmetric patterns in the atmosphere and sea ice during Arctic cyclones

2021 ◽  
pp. 1-47
Author(s):  
Robin Clancy ◽  
Cecilia M. Bitz ◽  
Edward Blanchard-Wrigglesworth ◽  
Marie C. McGraw ◽  
Steven M. Cavallo

AbstractArctic cyclones are an extremely common, year-round phenomenon, with substantial influence on sea ice. However, few studies address the heterogeneity in the spatial patterns in the atmosphere and sea ice during Arctic cyclones. We investigate these spatial patterns by compositing on cyclones from 1985-2016 using a novel, cyclone-centered approach that reveals conditions as functions of bearing and distance from cyclone centers. An axisymmetric, cold core model for the structure of Arctic cyclones has previously been proposed, however, we show that the structure of Arctic cyclones is comparable to those in the mid-latitudes, with cyclonic surface winds, a warm, moist sector to the east of cyclones and a cold, dry sector to the west. There is no consensus on the impact of Arctic cyclones on sea ice, as some studies have shown that Arctic cyclones lead to sea ice growth and others to sea ice loss. Instead, we find that sea ice decreases to the east of Arctic cyclones and increases to the west, with the greatest changes occurring in the marginal ice zone. Using a sea ice model forced with prescribed atmospheric reanalysis, we reveal the relative importance of the dynamic and thermodynamic forcing of Arctic cyclones on sea ice. The dynamic and thermodynamic responses of sea ice concentration to cyclones are comparable in magnitude, however dynamic processes dominate the response of sea ice thickness and are the primary driver of the east-west difference in the sea ice response to cyclones.

2012 ◽  
Vol 5 (2) ◽  
pp. 1627-1667 ◽  
Author(s):  
P. Mathiot ◽  
C. König Beatty ◽  
T. Fichefet ◽  
H. Goosse ◽  
F. Massonnet ◽  
...  

Abstract. Short-term and decadal sea-ice prediction systems need a realistic initial state, generally obtained using ice-ocean model simulations with data assimilation. However, only sea-ice concentration and velocity data are currently assimilated. In this work, an Ensemble Kalman Filter system is used to assimilate observed ice concentration and freeboard (i.e. thickness of emerged sea ice) data into a global coupled ocean–sea-ice model. The impact and effectiveness of our data assimilation system is assessed in two steps: firstly, through the assimilation of synthetic data (i.e., model-generated data) and, secondly, through the assimilation of satellite data. While ice concentrations are available daily, freeboard data used in this study are only available during six one-month periods spread over 2005–2007. Our results show that the simulated Arctic and Antarctic sea-ice extents are improved by the assimilation of synthetic ice concentration data. Assimilation of synthetic ice freeboard data improves the simulated sea-ice thickness field. Using real ice concentration data enhances the model realism in both hemispheres. Assimilation of ice concentration data significantly improves the total hemispheric sea-ice extent all year long, especially in summer. Combining the assimilation of ice freeboard and concentration data leads to better ice thickness, but does not further improve the ice extent. Moreover, the improvements in sea-ice thickness due to the assimilation of ice freeboard remain visible well beyond the assimilation periods.


2012 ◽  
Vol 5 (6) ◽  
pp. 1501-1515 ◽  
Author(s):  
P. Mathiot ◽  
C. König Beatty ◽  
T. Fichefet ◽  
H. Goosse ◽  
F. Massonnet ◽  
...  

Abstract. Short-term and decadal sea-ice prediction systems need a realistic initial state, generally obtained using ice–ocean model simulations with data assimilation. However, only sea-ice concentration and velocity data are currently assimilated. In this work, an ensemble Kalman filter system is used to assimilate observed ice concentration and freeboard (i.e. thickness of emerged) data into a global coupled ocean–sea-ice model. The impact and effectiveness of our data assimilation system is assessed in two steps: firstly, through the use of synthetic data (i.e. model-generated data), and secondly, through the assimilation of real satellite data. While ice concentrations are available daily, freeboard data used in this study are only available during six one-month periods spread over 2005–2007. Our results show that the simulated Arctic and Antarctic sea-ice extents are improved by the assimilation of synthetic ice concentration data. Assimilation of synthetic ice freeboard data improves the simulated sea-ice thickness field. Using real ice concentration data enhances the model realism in both hemispheres. Assimilation of ice concentration data significantly improves the total hemispheric sea-ice extent all year long, especially in summer. Combining the assimilation of ice freeboard and concentration data leads to better ice thickness, but does not further improve the ice extent. Moreover, the improvements in sea-ice thickness due to the assimilation of ice freeboard remain visible well beyond the assimilation periods.


1984 ◽  
Vol 5 ◽  
pp. 61-68 ◽  
Author(s):  
T. Holt ◽  
P. M. Kelly ◽  
B. S. G. Cherry

Soviet plans to divert water from rivers flowing into the Arctic Ocean have led to research into the impact of a reduction in discharge on Arctic sea ice. We consider the mechanisms by which discharge reductions might affect sea-ice cover and then test various hypotheses related to these mechanisms. We find several large areas over which sea-ice concentration correlates significantly with variations in river discharge, supporting two particular hypotheses. The first hypothesis concerns the area where the initial impacts are likely to which is the Kara Sea. Reduced riverflow is associated occur, with decreased sea-ice concentration in October, at the time of ice formation. This is believed to be the result of decreased freshening of the surface layer. The second hypothesis concerns possible effects on the large-scale current system of the Arctic Ocean and, in particular, on the inflow of Atlantic and Pacific water. These effects occur as a result of changes in the strength of northward-flowing gradient currents associated with variations in river discharge. Although it is still not certain that substantial transfers of riverflow will take place, it is concluded that the possibility of significant cryospheric effects and, hence, large-scale climate impact should not be neglected.


2018 ◽  
Author(s):  
David Schröder ◽  
Danny L. Feltham ◽  
Michel Tsamados ◽  
Andy Ridout ◽  
Rachel Tilling

Abstract. Estimates of Arctic sea ice thickness are available from the CryoSat-2 (CS2) radar altimetry mission during ice growth seasons since 2010. We derive the sub-grid scale ice thickness distribution (ITD) with respect to 5 ice thickness categories used in a sea ice component (CICE) of climate simulations. This allows us to initialize the ITD in stand-alone simulations with CICE and to verify the simulated cycle of ice thickness. We find that a default CICE simulation strongly underestimates ice thickness, despite reproducing the inter-annual variability of summer sea ice extent. We can identify the underestimation of winter ice growth as being responsible and show that increasing the ice conductive flux for lower temperatures (bubbly brine scheme) and accounting for the loss of drifting snow results in the simulated sea ice growth being more realistic. Sensitivity studies provide insight into the impact of initial and atmospheric conditions and, thus, on the role of positive and negative feedback processes. During summer, atmospheric conditions are responsible for 50 % of September sea ice thickness variability through the positive sea ice and melt pond albedo feedback. However, atmospheric winter conditions have little impact on winter ice growth due to the dominating negative conductive feedback process: the thinner the ice and snow in autumn, the stronger the ice growth in winter. We conclude that the fate of Arctic summer sea ice is largely controlled by atmospheric conditions during the melting season rather than by winter temperature. Our optimal model configuration does not only improve the simulated sea ice thickness, but also summer sea ice concentration, melt pond fraction, and length of the melt season. It is the first time CS2 sea ice thickness data have been applied successfully to improve sea ice model physics.


2021 ◽  
Author(s):  
Francois Massonnet ◽  
Sara Fleury ◽  
Florent Garnier ◽  
Ed Blockley ◽  
Pablo Ortega Montilla ◽  
...  

<p>It is well established that winter and spring Arctic sea-ice thickness anomalies are a key source of predictability for late summer sea-ice concentration. While numerical general circulation models (GCMs) are increasingly used to perform seasonal predictions, they are not systematically taking advantage of the wealth of polar observations available. Data assimilation, the study of how to constrain GCMs to produce a physically consistent state given observations and their uncertainties, remains, therefore, an active area of research in the field of seasonal prediction. With the recent advent of satellite laser and radar altimetry, large-scale estimates of sea-ice thickness have become available for data assimilation in GCMs. However, the sea-ice thickness is never directly observed by altimeters, but rather deduced from the measured sea-ice freeboard (the height of the emerged part of the sea ice floe) based on several assumptions like the depth of snow on sea ice and its density, which are both often poorly estimated. Thus, observed sea-ice thickness estimates are potentially less reliable than sea-ice freeboard estimates. Here, using the EC-Earth3 coupled forecasting system and an ensemble Kalman filter, we perform a set of sensitivity tests to answer the following questions: (1) Does the assimilation of late spring observed sea-ice freeboard or thickness information yield more skilful predictions than no assimilation at all? (2) Should the sea-ice freeboard assimilation be preferred over sea-ice thickness assimilation? (3) Does the assimilation of observed sea-ice concentration provide further constraints on the prediction? We address these questions in the context of a realistic test case, the prediction of 2012 summer conditions, which led to the all-time record low in Arctic sea-ice extent. We finally formulate a set of recommendations for practitioners and future users of sea ice observations in the context of seasonal prediction.</p>


2019 ◽  
Vol 13 (7) ◽  
pp. 2051-2073 ◽  
Author(s):  
Valentin Ludwig ◽  
Gunnar Spreen ◽  
Christian Haas ◽  
Larysa Istomina ◽  
Frank Kauker ◽  
...  

Abstract. Observations of sea-ice concentration are available from satellites year-round and almost weather-independently using passive microwave radiometers at resolutions down to 5 km. Thermal infrared radiometers provide data with a resolution of 1 km but only under cloud-free conditions. We use the best of the two satellite measurements and merge thermal infrared and passive microwave sea-ice concentrations. This yields a merged sea-ice concentration product combining the gap-free spatial coverage of the passive microwave sea-ice concentration and the 1 km resolution of the thermal infrared sea-ice concentration. The benefit of the merged product is demonstrated by observations of a polynya which opened north of Greenland in February 2018. We find that the merged sea-ice concentration product resolves leads at sea-ice concentrations between 60 % and 90 %. They are not resolved by the coarser passive microwave sea-ice concentration product. The benefit of the merged product is most pronounced during the formation of the polynya. Next, the environmental conditions during the polynya event are analysed. The polynya was caused by unusual southerly winds during which the sea ice drifted northward instead of southward as usual. The daily displacement was 50 % stronger than normal. The polynya was associated with a warm-air intrusion caused by a high-pressure system over the Eurasian Arctic. Surface air temperatures were slightly below 0 ∘C and thus more than 20 ∘C higher than normal. Two estimates of thermodynamic sea-ice growth yield sea-ice thicknesses of 60 and 65 cm at the end of March in the area opened by the polynya. This differed from airborne sea-ice thickness measurements, indicating that sea-ice growth processes in the polynya are complicated by rafting and ridging. A sea-ice volume of 33 km3 was produced thermodynamically.


2019 ◽  
Vol 13 (2) ◽  
pp. 521-543 ◽  
Author(s):  
Leandro Ponsoni ◽  
François Massonnet ◽  
Thierry Fichefet ◽  
Matthieu Chevallier ◽  
David Docquier

Abstract. The ocean–sea ice reanalyses are one of the main sources of Arctic sea ice thickness data both in terms of spatial and temporal resolution, since observations are still sparse in time and space. In this work, we first aim at comparing how the sea ice thickness from an ensemble of 14 reanalyses compares with different sources of observations, such as moored upward-looking sonars, submarines, airbornes, satellites, and ice boreholes. Second, based on the same reanalyses, we intend to characterize the timescales (persistence) and length scales of sea ice thickness anomalies. We investigate whether data assimilation of sea ice concentration by the reanalyses impacts the realism of sea ice thickness as well as its respective timescales and length scales. The results suggest that reanalyses with sea ice data assimilation do not necessarily perform better in terms of sea ice thickness compared with the reanalyses which do not assimilate sea ice concentration. However, data assimilation has a clear impact on the timescales and length scales: reanalyses built with sea ice data assimilation present shorter timescales and length scales. The mean timescales and length scales for reanalyses with data assimilation vary from 2.5 to 5.0 months and 337.0 to 732.5 km, respectively, while reanalyses with no data assimilation are characterized by values from 4.9 to 7.8 months and 846.7 to 935.7 km, respectively.


2019 ◽  
Author(s):  
Timothy Williams ◽  
Anton Korosov ◽  
Pierre Rampal ◽  
Einar Ólason

Abstract. The neXtSIM-F forecast system consists of a stand-alone sea ice model, neXtSIM, forced by the TOPAZ ocean forecast and the ECMWF atmospheric forecast, combined with daily data assimilation. It was tested for the northern winter of 2018–2019 with different data being assimilated and was found to perform well. Despite drift not being assimilated in our system, we obtain quite good agreement between observations, comparing well to more sophisticated coupled ice-ocean forecast systems. The RMSE in drift speed is around 3 km/day for the first three days, climbing to about 4 km/day for the next day or two; computing the RMSE in the total drift adds about 1 km/day to the error in speed. The drift bias remains close to zero over the whole period from Nov 2018–Apr 2019. The neXtSIM-F forecast system assimilates OSISAF sea ice concentration products (both SSMI and AMSR2) and SMOS sea ice thickness by modifying the initial conditions daily and adding a compensating heat flux to prevent removed ice growing back too quickly. This greatly improved the agreement of these quantities with observations for the first 3–4 days of the forecast.


2019 ◽  
Vol 65 (253) ◽  
pp. 813-821 ◽  
Author(s):  
Longjiang Mu ◽  
Xi Liang ◽  
Qinghua Yang ◽  
Jiping Liu ◽  
Fei Zheng

AbstractIn an effort to improve the reliability of Arctic sea-ice predictions, an ensemble-based Arctic Ice Ocean Prediction System (ArcIOPS) has been developed to meet operational demands. The system is based on a regional Arctic configuration of the Massachusetts Institute of Technology general circulation model. A localized error subspace transform ensemble Kalman filter is used to assimilate the weekly merged CryoSat-2 and Soil Moisture and Ocean Salinity sea-ice thickness data together with the daily Advanced Microwave Scanning Radiometer 2 (AMSR2) sea-ice concentration data. The weather forecasts from the Global Forecast System of the National Centers for Environmental Prediction drive the sea ice–ocean coupled model. The ensemble mean sea-ice forecasts were used to facilitate the Chinese National Arctic Research Expedition in summer 2017. The forecasted sea-ice concentration is evaluated against AMSR2 and Special Sensor Microwave Imager/Sounder sea-ice concentration data. The forecasted sea-ice thickness is compared to the in-situ observations and the Pan-Arctic Ice-Ocean Modeling and Assimilation System. These comparisons show the promising potential of ArcIOPS for operational Arctic sea-ice forecasts. Nevertheless, the forecast bias in the Beaufort Sea calls for a delicate parameter calibration and a better design of the assimilation system.


2016 ◽  
Vol 10 (6) ◽  
pp. 2745-2761 ◽  
Author(s):  
Jiping Xie ◽  
François Counillon ◽  
Laurent Bertino ◽  
Xiangshan Tian-Kunze ◽  
Lars Kaleschke

Abstract. An observation product for thin sea ice thickness (SMOS-Ice) is derived from the brightness temperature data of the European Space Agency's (ESA) Soil Moisture and Ocean Salinity (SMOS) mission. This product is available in near-real time, at daily frequency, during the cold season. In this study, we investigate the benefit of assimilating SMOS-Ice into the TOPAZ coupled ocean and sea ice forecasting system, which is the Arctic component of the Copernicus marine environment monitoring services. The TOPAZ system assimilates sea surface temperature (SST), altimetry data, temperature and salinity profiles, ice concentration, and ice drift with the ensemble Kalman filter (EnKF). The conditions for assimilation of sea ice thickness thinner than 0.4 m are favorable, as observations are reliable below this threshold and their probability distribution is comparable to that of the model. Two parallel Observing System Experiments (OSE) have been performed in March and November 2014, in which the thicknesses from SMOS-Ice (thinner than 0.4 m) are assimilated in addition to the standard observational data sets. It is found that the root mean square difference (RMSD) of thin sea ice thickness is reduced by 11 % in March and 22 % in November compared to the daily thin ice thicknesses of SMOS-Ice, which suggests that SMOS-Ice has a larger impact during the beginning of the cold season. Validation against independent observations of ice thickness from buoys and ice draft from moorings indicates that there are no degradations in the pack ice but there are some improvements near the ice edge close to where the SMOS-Ice has been assimilated. Assimilation of SMOS-Ice yields a slight improvement for ice concentration and degrades neither SST nor sea level anomaly. Analysis of the degrees of freedom for signal (DFS) indicates that the SMOS-Ice has a comparatively small impact but it has a significant contribution in constraining the system (> 20 % of the impact of all ice and ocean observations) near the ice edge. The areas of largest impact are the Kara Sea, Canadian Archipelago, Baffin Bay, Beaufort Sea and Greenland Sea. This study suggests that the SMOS-Ice is a good complementary data set that can be safely included in the TOPAZ system.


Sign in / Sign up

Export Citation Format

Share Document