Atmospheric Circulation and Its Effect on Arctic Sea Ice in CCSM3 Simulations at Medium and High Resolution*

2006 ◽  
Vol 19 (11) ◽  
pp. 2415-2436 ◽  
Author(s):  
Eric DeWeaver ◽  
Cecilia M. Bitz

Abstract The simulation of Arctic sea ice and surface winds changes significantly when Community Climate System Model version 3 (CCSM3) resolution is increased from T42 (∼2.8°) to T85 (∼1.4°). At T42 resolution, Arctic sea ice is too thick off the Siberian coast and too thin along the Canadian coast. Both of these biases are reduced at T85 resolution. The most prominent surface wind difference is the erroneous North Polar summer anticyclone, present at T42 but absent at T85. An offline sea ice model is used to study the effect of the surface winds on sea ice thickness. In this model, the surface wind stress is prescribed alternately from reanalysis and the T42 and T85 simulations. In the offline model, CCSM3 surface wind biases have a dramatic effect on sea ice distribution: with reanalysis surface winds annual-mean ice thickness is greatest along the Canadian coast, but with CCSM3 winds thickness is greater on the Siberian side. A significant difference between the two CCSM3-forced offline simulations is the thickness of the ice along the Canadian archipelago, where the T85 winds produce thicker ice than their T42 counterparts. Seasonal forcing experiments, with CCSM3 winds during spring and summer and reanalysis winds in fall and winter, relate the Canadian thickness difference to spring and summer surface wind differences. These experiments also show that the ice buildup on the Siberian coast at both resolutions is related to the fall and winter surface winds. The Arctic atmospheric circulation is examined further through comparisons of the winter sea level pressure (SLP) and eddy geopotential height. At both resolutions the simulated Beaufort high is quite weak, weaker at higher resolution. Eddy heights show that the wintertime Beaufort high in reanalysis has a barotropic vertical structure. In contrast, high CCSM3 SLP in Arctic winter is found in association with cold lower-tropospheric temperatures and a baroclinic vertical structure. In reanalysis, the summertime Arctic surface circulation is dominated by a polar cyclone, which is accompanied by surface inflow and a deep Ferrel cell north of the traditional polar cell. The Arctic Ferrel cell is accompanied by a northward flux of zonal momentum and a polar lobe of the zonal-mean jet. These features do not appear in the CCSM3 simulations at either resolution.

2009 ◽  
Vol 22 (1) ◽  
pp. 165-176 ◽  
Author(s):  
R. W. Lindsay ◽  
J. Zhang ◽  
A. Schweiger ◽  
M. Steele ◽  
H. Stern

Abstract The minimum of Arctic sea ice extent in the summer of 2007 was unprecedented in the historical record. A coupled ice–ocean model is used to determine the state of the ice and ocean over the past 29 yr to investigate the causes of this ice extent minimum within a historical perspective. It is found that even though the 2007 ice extent was strongly anomalous, the loss in total ice mass was not. Rather, the 2007 ice mass loss is largely consistent with a steady decrease in ice thickness that began in 1987. Since then, the simulated mean September ice thickness within the Arctic Ocean has declined from 3.7 to 2.6 m at a rate of −0.57 m decade−1. Both the area coverage of thin ice at the beginning of the melt season and the total volume of ice lost in the summer have been steadily increasing. The combined impact of these two trends caused a large reduction in the September mean ice concentration in the Arctic Ocean. This created conditions during the summer of 2007 that allowed persistent winds to push the remaining ice from the Pacific side to the Atlantic side of the basin and more than usual into the Greenland Sea. This exposed large areas of open water, resulting in the record ice extent anomaly.


2016 ◽  
Author(s):  
R. L. Tilling ◽  
A. Ridout ◽  
A. Shepherd

Abstract. Timely observations of sea ice thickness help us to understand Arctic climate, and can support maritime activities in the Polar Regions. Although it is possible to calculate Arctic sea ice thickness using measurements acquired by CryoSat-2, the latency of the final release dataset is typically one month, due to the time required to determine precise satellite orbits. We use a new fast delivery CryoSat-2 dataset based on preliminary orbits to compute Arctic sea ice thickness in near real time (NRT), and analyse this data for one sea ice growth season from October 2014 to April 2015. We show that this NRT sea ice thickness product is of comparable accuracy to that produced using the final release CryoSat-2 data, with an average thickness difference of 5 cm, demonstrating that the satellite orbit is not a critical factor in determining sea ice freeboard. In addition, the CryoSat-2 fast delivery product also provides measurements of Arctic sea ice thickness within three days of acquisition by the satellite, and a measurement is delivered, on average, within 10, 7 and 6 km of each location in the Arctic every 2, 14 and 28 days respectively. The CryoSat-2 NRT sea ice thickness dataset provides an additional constraint for seasonal predictions of Arctic climate change, and will allow industries such as tourism and transport to navigate the polar oceans with safety and care.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7011
Author(s):  
Feng Xiao ◽  
Fei Li ◽  
Shengkai Zhang ◽  
Jiaxing Li ◽  
Tong Geng ◽  
...  

Satellite altimeters can be used to derive long-term and large-scale sea ice thickness changes. Sea ice thickness retrieval is based on measurements of freeboard, and the conversion of freeboard to thickness requires knowledge of the snow depth and snow, sea ice, and sea water densities. However, these parameters are difficult to be observed concurrently with altimeter measurements. The uncertainties in these parameters inevitably cause uncertainties in sea ice thickness estimations. This paper introduces a new method based on least squares adjustment (LSA) to estimate Arctic sea ice thickness with CryoSat-2 measurements. A model between the sea ice freeboard and thickness is established within a 5 km × 5 km grid, and the model coefficients and sea ice thickness are calculated using the LSA method. Based on the newly developed method, we are able to derive estimates of the Arctic sea ice thickness for 2010 through 2019 using CryoSat-2 altimetry data. Spatial and temporal variations of the Arctic sea ice thickness are analyzed, and comparisons between sea ice thickness estimates using the LSA method and three CryoSat-2 sea ice thickness products (Alfred Wegener Institute (AWI), Centre for Polar Observation and Modelling (CPOM), and NASA Goddard Space Flight Centre (GSFC)) are performed for the 2018–2019 Arctic sea ice growth season. The overall differences of sea ice thickness estimated in this study between AWI, CPOM, and GSFC are 0.025 ± 0.640 m, 0.143 ± 0.640 m, and −0.274 ± 0.628 m, respectively. Large differences between the LSA and three products tend to appear in areas covered with thin ice due to the limited accuracy of CryoSat-2 over thin ice. Spatiotemporally coincident Operation IceBridge (OIB) thickness values are also used for validation. Good agreement with a difference of 0.065 ± 0.187 m is found between our estimates and the OIB results.


2020 ◽  
Vol 14 (4) ◽  
pp. 1325-1345 ◽  
Author(s):  
Yinghui Liu ◽  
Jeffrey R. Key ◽  
Xuanji Wang ◽  
Mark Tschudi

Abstract. Sea ice is a key component of the Arctic climate system, and has impacts on global climate. Ice concentration, thickness, and volume are among the most important Arctic sea ice parameters. This study presents a new record of Arctic sea ice thickness and volume from 1984 to 2018 based on an existing satellite-derived ice age product. The relationship between ice age and ice thickness is first established for every month based on collocated ice age and ice thickness from submarine sonar data (1984–2000) and ICESat (2003–2008) and an empirical ice growth model. Based on this relationship, ice thickness is derived for the entire time period from the weekly ice age product, and the Arctic monthly sea ice volume is then calculated. The ice-age-based thickness and volume show good agreement in terms of bias and root-mean-square error with submarine, ICESat, and CryoSat-2 ice thickness, as well as ICESat and CryoSat-2 ice volume, in February–March and October–November. More detailed comparisons with independent data from Envisat for 2003 to 2010 and CryoSat-2 from CPOM, AWI, and NASA GSFC (Goddard Space Flight Center) for 2011 to 2018 show low bias in ice-age-based thickness. The ratios of the ice volume uncertainties to the mean range from 21 % to 29 %. Analysis of the derived data shows that the ice-age-based sea ice volume exhibits a decreasing trend of −411 km3 yr−1 from 1984 to 2018, stronger than the trends from other datasets. Of the factors affecting the sea ice volume trends, changes in sea ice thickness contribute more than changes in sea ice area, with a contribution of at least 80 % from changes in sea ice thickness from November to May and nearly 50 % in August and September, while less than 30 % is from changes in sea ice area in all months.


2016 ◽  
Vol 29 (2) ◽  
pp. 889-902 ◽  
Author(s):  
Rasmus A. Pedersen ◽  
Ivana Cvijanovic ◽  
Peter L. Langen ◽  
Bo M. Vinther

Abstract Reduction of the Arctic sea ice cover can affect the atmospheric circulation and thus impact the climate beyond the Arctic. The atmospheric response may, however, vary with the geographical location of sea ice loss. The atmospheric sensitivity to the location of sea ice loss is studied using a general circulation model in a configuration that allows combination of a prescribed sea ice cover and an active mixed layer ocean. This hybrid setup makes it possible to simulate the isolated impact of sea ice loss and provides a more complete response compared to experiments with fixed sea surface temperatures. Three investigated sea ice scenarios with ice loss in different regions all exhibit substantial near-surface warming, which peaks over the area of ice loss. The maximum warming is found during winter, delayed compared to the maximum sea ice reduction. The wintertime response of the midlatitude atmospheric circulation shows a nonuniform sensitivity to the location of sea ice reduction. While all three scenarios exhibit decreased zonal winds related to high-latitude geopotential height increases, the magnitudes and locations of the anomalies vary between the simulations. Investigation of the North Atlantic Oscillation reveals a high sensitivity to the location of the ice loss. The northern center of action exhibits clear shifts in response to the different sea ice reductions. Sea ice loss in the Atlantic and Pacific sectors of the Arctic cause westward and eastward shifts, respectively.


2020 ◽  
Vol 47 (1) ◽  
Author(s):  
Yu‐Chiao Liang ◽  
Young‐Oh Kwon ◽  
Claude Frankignoul ◽  
Gokhan Danabasoglu ◽  
Stephen Yeager ◽  
...  

2010 ◽  
Vol 23 (2) ◽  
pp. 333-351 ◽  
Author(s):  
Clara Deser ◽  
Robert Tomas ◽  
Michael Alexander ◽  
David Lawrence

Abstract The authors investigate the atmospheric response to projected Arctic sea ice loss at the end of the twenty-first century using an atmospheric general circulation model (GCM) coupled to a land surface model. The response was obtained from two 60-yr integrations: one with a repeating seasonal cycle of specified sea ice conditions for the late twentieth century (1980–99) and one with that of sea ice conditions for the late twenty-first century (2080–99). In both integrations, a repeating seasonal cycle of SSTs for 1980–99 was prescribed to isolate the impact of projected future sea ice loss. Note that greenhouse gas concentrations remained fixed at 1980–99 levels in both sets of experiments. The twentieth- and twenty-first-century sea ice (and SST) conditions were obtained from ensemble mean integrations of a coupled GCM under historical forcing and Special Report on Emissions Scenarios (SRES) A1B scenario forcing, respectively. The loss of Arctic sea ice is greatest in summer and fall, yet the response of the net surface energy budget over the Arctic Ocean is largest in winter. Air temperature and precipitation responses also maximize in winter, both over the Arctic Ocean and over the adjacent high-latitude continents. Snow depths increase over Siberia and northern Canada because of the enhanced winter precipitation. Atmospheric warming over the high-latitude continents is mainly confined to the boundary layer (below ∼850 hPa) and to regions with a strong low-level temperature inversion. Enhanced warm air advection by submonthly transient motions is the primary mechanism for the terrestrial warming. A significant large-scale atmospheric circulation response is found during winter, with a baroclinic (equivalent barotropic) vertical structure over the Arctic in November–December (January–March). This response resembles the negative phase of the North Atlantic Oscillation in February only. Comparison with the fully coupled model reveals that Arctic sea ice loss accounts for most of the seasonal, spatial, and vertical structure of the high-latitude warming response to greenhouse gas forcing at the end of the twenty-first century.


2014 ◽  
Vol 27 (2) ◽  
pp. 527-550 ◽  
Author(s):  
Justin J. Wettstein ◽  
Clara Deser

Abstract Internal variability in twenty-first-century summer Arctic sea ice loss and its relationship to the large-scale atmospheric circulation is investigated in a 39-member Community Climate System Model, version 3 (CCSM3) ensemble for the period 2000–61. Each member is subject to an identical greenhouse gas emissions scenario and differs only in the atmospheric model component's initial condition. September Arctic sea ice extent trends during 2020–59 range from −2.0 × 106 to −5.7 × 106 km2 across the 39 ensemble members, indicating a substantial role for internal variability in future Arctic sea ice loss projections. A similar nearly threefold range (from −7.0 × 103 to −19 × 103 km3) is found for summer sea ice volume trends. Higher rates of summer Arctic sea ice loss in CCSM3 are associated with enhanced transpolar drift and Fram Strait ice export driven by surface wind and sea level pressure patterns. Over the Arctic, the covarying atmospheric circulation patterns resemble the so-called Arctic dipole, with maximum amplitude between April and July. Outside the Arctic, an atmospheric Rossby wave train over the Pacific sector is associated with internal ice loss variability. Interannual covariability patterns between sea ice and atmospheric circulation are similar to those based on trends, suggesting that similar processes govern internal variability over a broad range of time scales. Interannual patterns of CCSM3 ice–atmosphere covariability compare well with those in nature and in the newer CCSM4 version of the model, lending confidence to the results. Atmospheric teleconnection patterns in CCSM3 suggest that the tropical Pacific modulates Arctic sea ice variability via the aforementioned Rossby wave train. Large ensembles with other coupled models are needed to corroborate these CCSM3-based findings.


Sign in / Sign up

Export Citation Format

Share Document