sea ice reduction
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 4)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Vol 34 (3) ◽  
pp. 1081-1097
Author(s):  
Mian Xu ◽  
Wenshou Tian ◽  
Jiankai Zhang ◽  
Tao Wang ◽  
Kai Qie

AbstractUsing the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim) dataset and the Specified Chemistry Whole Atmosphere Community Climate Model (WACCM-SC), the impacts of sea ice reduction in the Barents–Kara Seas (BKS) on the East Asian trough (EAT) in late winter are investigated. Results from both reanalysis data and simulations show that the BKS sea ice reduction leads to a deepened EAT in late winter, especially in February, while the EAT axis tilt is not sensitive to the BKS sea ice reduction. Further analysis shows that the BKS sea ice reduction influences the EAT through the tropospheric and stratospheric pathways. For the tropospheric pathway, the results from a linearized barotropic model and Rossby wave ray tracing model reveal that long Rossby wave trains stimulated by the BKS sea ice loss propagate downstream to the North Pacific, strengthening the EAT. For the stratospheric pathway, the upward planetary waves enhanced by the BKS sea ice reduction shift the subpolar westerlies near the tropopause southward. With the critical lines displaced equatorward, the poleward transient eddies break at lower latitudes, shifting the eddy momentum deposit throughout the troposphere equatorward. Tropospheric westerlies maintained by eddy momentum deposit are also shifted southward, inducing the cyclonic anomalies over the North Pacific and deepening the EAT in late winter. Nudging experiments show that the tropospheric pathway only contributes to around 29.7% of the deepening of the EAT in February induced by the BKS sea ice loss, while the remaining 70.3% is caused by stratosphere–troposphere coupling.


2019 ◽  
Vol 33 (8) ◽  
pp. 1085-1099 ◽  
Author(s):  
Takuhei Shiozaki ◽  
Minoru Ijichi ◽  
Amane Fujiwara ◽  
Akiko Makabe ◽  
Shigeto Nishino ◽  
...  

2019 ◽  
Vol 57 (3) ◽  
pp. 182-194 ◽  
Author(s):  
Rui Luo ◽  
Zhiwei Wu ◽  
Peng Zhang ◽  
Juan Dou

2018 ◽  
Author(s):  
Marion Lebrun ◽  
Martin Vancoppenolle ◽  
Gurvan Madec ◽  
François Massonnet

Abstract. The recent Arctic sea-ice reduction is associated with an increase in the ice-free season duration, with comparable contributions of earlier retreat and later freeze-up. Here we show that within the next decades, the trends towards later freeze-up should progressively exceed and ultimately double the trend towards an earlier ice retreat date. This feature is robustly found in a hierarchy of climate models and is consistent with a simple mechanism: solar energy is absorbed more efficiently than it can be released in non-solar form until freeze-up. Based on climate change simulations, we envision an increase and a shift of the ice-free season towards fall, which will affect Arctic ecosystems and navigation.


2017 ◽  
Author(s):  
Kwang-Yul Kim ◽  
Jinju Kim ◽  
Saerim Yeo ◽  
Hanna Na ◽  
Benjamin D. Hamlington ◽  
...  

Abstract. Sea ice reduction is accelerating in the Barents and Kara Seas. Several mechanisms are proposed to explain the accelerated loss of polar sea ice, which remains an open question. In the present study, the detailed physical mechanism of sea ice reduction in winter is identified using the daily ERA interim reanalysis data. Downward longwave radiation is an essential element for sea ice reduction, but can only be sustained by excessive upward heat flux from the sea surface exposed to air in the region of sea ice loss. The increased turbulent heat flux is used to increase air temperature and specific humidity in the lower troposphere, which in turn increases downward longwave radiation. This feedback process is clearly observed in the Barents and Kara Seas in the reanalysis data. A quantitative assessment reveals that this feedback process is amplifying at the rate of ~ 8.9 % every year during 1979–2016. Based on this estimate, sea ice will completely disappear in the Barents and Kara Seas by around 2025. Availability of excessive heat flux is necessary for the maintenance of this feedback process; a similar mechanism of sea ice loss is expected to take place over the sea-ice covered polar region when sea ice is not fully recovered in winter.


2017 ◽  
Vol 30 (7) ◽  
pp. 2639-2654 ◽  
Author(s):  
Tingting Gong ◽  
Dehai Luo

In this paper, the lead–lag relationship between the Arctic sea ice variability over the Barents–Kara Sea (BKS) and Ural blocking (UB) in winter (DJF) ranging from 1979/80 to 2011/12 is examined. It is found that in a regressed DJF-mean field an increased UB frequency (days) corresponds to an enhanced sea ice decline over the BKS, while the high sea surface temperature over the BKS is accompanied by a significant Arctic sea ice reduction. Lagged daily regression and correlation reveal that the growth and maintenance of the UB that is related to the positive North Atlantic Oscillation (NAO+) through the negative east Atlantic/west Russia (EA/WR−) wave train is accompanied by an intensified negative BKS sea ice anomaly, and the BKS sea ice reduction lags the UB pattern by about four days. Because the intensified UB pattern occurs together with enhanced downward infrared radiation (IR) associated with the intensified moisture flux convergence and total column water over the BKS, the UB pattern contributes significantly to the BKS sea ice decrease on a time scale of weeks through intensified positive surface air temperature (SAT) anomalies resulting from enhanced downward IR. It is also found that the BKS sea ice decline can persistently maintain even when the UB has disappeared, thus indicating that the UB pattern is an important amplifier of the BKS sea ice reduction. Moreover, it is demonstrated that the EA/WR− wave train formed by the combined NAO+ and UB patterns is closely related to the amplified warming over the BKS through the strengthening (weakening) of mid-to-high-latitude westerly wind in the North Atlantic (Eurasia).


2016 ◽  
Vol 16 (22) ◽  
pp. 14343-14356 ◽  
Author(s):  
Manabu Abe ◽  
Toru Nozawa ◽  
Tomoo Ogura ◽  
Kumiko Takata

Abstract. This study investigates the effect of sea ice reduction on Arctic cloud cover in historical simulations with the coupled atmosphere–ocean general circulation model MIROC5. Arctic sea ice has been substantially retreating since the 1980s, particularly in September, under simulated global warming conditions. The simulated sea ice reduction is consistent with satellite observations. On the other hand, Arctic cloud cover has been increasing in October, with about a 1-month lag behind the sea ice reduction. The delayed response leads to extensive sea ice reductions because the heat and moisture fluxes from the underlying open ocean into the atmosphere are enhanced. Sensitivity experiments with the atmospheric part of MIROC5 clearly show that sea ice reduction causes increases in cloud cover. Arctic cloud cover increases primarily in the lower troposphere, but it decreases in the near-surface layers just above the ocean; predominant temperature rises in these near-surface layers cause drying (i.e., decreases in relative humidity), despite increasing moisture flux. Cloud radiative forcing due to increases in cloud cover in autumn brings an increase in the surface downward longwave radiation (DLR) by approximately 40–60 % compared to changes in clear-sky surface DLR in fall. These results suggest that an increase in Arctic cloud cover as a result of reduced sea ice coverage may bring further sea ice retreat and enhance the feedback processes of Arctic warming.


Sign in / Sign up

Export Citation Format

Share Document