scholarly journals Some Overlooked Features of Tropical Atlantic Climate Leading to a New Niño-Like Phenomenon*

2006 ◽  
Vol 19 (22) ◽  
pp. 5859-5874 ◽  
Author(s):  
Yuko Okumura ◽  
Shang-Ping Xie

Abstract The Atlantic Niño, an equatorial zonal mode akin to the Pacific El Niño–Southern Oscillation (ENSO), is phase-locked to boreal summer when the equatorial easterly winds intensify and the thermocline shoals in the Gulf of Guinea. A suite of satellite and in situ observations reveals a new mode of tropical Atlantic variability that displays many characteristics of the zonal mode but instead peaks in November–December (ND). This new mode is found to be statistically independent from both the Atlantic Niño in the preceding summer and the Pacific ENSO. The origin of this ND zonal mode lies in an overlooked aspect of the seasonal cycle in the equatorial Atlantic. In November the equatorial easterly winds intensify for the second time, increasing upwelling and lifting the thermocline in the Gulf of Guinea. An analysis of high-resolution climatological data shows that these dynamical changes induce a noticeable SST cooling in the central equatorial Atlantic. The shoaling thermocline and increased upwelling enhance the SST sensitivity to surface wind changes, reinvigorating equatorial ocean–atmosphere interaction. The resultant ocean–atmospheric anomalies are organized into patterns that give rise to positive mutual feedback as Bjerknes envisioned for the Pacific ENSO. This ND zonal mode significantly affects interannual rainfall variability in coastal Congo–Angola during its early rainy season. It tends to further evolve into a meridional mode in the following March–April, affecting precipitation in northeast Brazil. Thus it offers potential predictability for climate over the Atlantic sector in early boreal winter, a season for which local ocean–atmosphere variability was otherwise poorly understood.

2019 ◽  
Vol 5 (8) ◽  
pp. eaax4111 ◽  
Author(s):  
Fan Jia ◽  
Wenju Cai ◽  
Lixin Wu ◽  
Bolan Gan ◽  
Guojian Wang ◽  
...  

Sea surface temperature variability in the equatorial eastern Atlantic, which is referred to as an Atlantic Niño (Niña) at its warm (cold) phase and peaks in boreal summer, dominates the interannual variability in the equatorial Atlantic. By strengthening of the Walker circulation, an Atlantic Niño favors a Pacific La Niña, which matures in boreal winter, providing a precursory memory for El Niño–Southern Oscillation (ENSO) predictability. How this Atlantic impact responds to greenhouse warming is unclear. Here, we show that greenhouse warming leads to a weakened influence from the Atlantic Niño/Niña on the Pacific ENSO. In response to anomalous equatorial Atlantic heating, ascending over the equatorial Atlantic is weaker due to an increased tropospheric stability in the mean climate, resulting in a weaker impact on the Pacific Ocean. Thus, as greenhouse warming continues, Pacific ENSO is projected to be less affected by the Atlantic Niño/Niña and more challenging to predict.


2018 ◽  
Vol 31 (2) ◽  
pp. 515-536 ◽  
Author(s):  
Marta Martín-Rey ◽  
Irene Polo ◽  
Belén Rodríguez-Fonseca ◽  
Teresa Losada ◽  
Alban Lazar

The Atlantic multidecadal oscillation (AMO) is the leading mode of Atlantic sea surface temperature (SST) variability at multidecadal time scales. Previous studies have shown that the AMO could modulate El Niño–Southern Oscillation (ENSO) variance. However, the role played by the AMO in the tropical Atlantic variability (TAV) is still uncertain. Here, it is demonstrated that during negative AMO phases, associated with a shallower thermocline, the eastern equatorial Atlantic SST variability is enhanced by more than 150% in boreal summer. Consequently, the interannual TAV modes are modified. During negative AMO, the Atlantic Niño displays larger amplitude and a westward extension and it is preceded by a simultaneous weakening of both subtropical highs in winter and spring. In contrast, a meridional seesaw SLP pattern evolving into a zonal gradient leads the Atlantic Niño during positive AMO. The north tropical Atlantic (NTA) mode is related to a Scandinavian blocking pattern during winter and spring in negative AMO, while under positive AMO it is part of the SST tripole associated with the North Atlantic Oscillation. Interestingly, the emergence of an overlooked variability mode, here called the horseshoe (HS) pattern on account of its shape, is favored during negative AMO. This anomalous warm (cool) HS surrounding an eastern equatorial cooling (warming) is remotely forced by an ENSO phenomenon. During negative AMO, the tropical–extratropical teleconnections are enhanced and the Walker circulation is altered. This, together with the increased equatorial SST variability, could promote the ENSO impacts on TAV. The results herein give a step forward in the better understanding of TAV, which is essential to improving its modeling, impacts, and predictability.


2011 ◽  
Vol 24 (7) ◽  
pp. 1931-1949 ◽  
Author(s):  
Ousmane Ndiaye ◽  
M. Neil Ward ◽  
Wassila M. Thiaw

Abstract The ability of several atmosphere-only and coupled ocean–atmosphere general circulation models (AGCMs and CGCMs, respectively) is explored for the prediction of seasonal July–September (JAS) Sahel rainfall. The AGCMs driven with observed sea surface temperature (SST) over the period 1968–2001 confirm the poor ability of such models to represent interannual Sahel rainfall variability. However, using a model output statistics (MOS) approach with the predicted low-level wind field over the tropical Atlantic and western part of West Africa yields good Sahel rainfall skill for all models. Skill is mostly captured in the leading empirical orthogonal function (EOF1), representing large-scale fluctuation in the regional circulation system over the tropical Atlantic. This finding has operational significance for the utility of AGCMs for short lead-time prediction based on persistence of June SST information; however, studies have shown that for longer lead-time forecasts, there is substantial loss of skill, relative to that achieved using the observed JAS SST. The potential of CGCMs is therefore explored for extending the lead time of Sahel rainfall predictions. Some of the models studied, when initialized using April information, show potential to at least match the levels of skill achievable from assuming persistence of April SST. One model [NCEP Climate Forecasting System (CFS)] was found to be particularly promising. Diagnosis of the hindcasts available for the CFS (from lead times up to six months for 1981–2008) suggests that, especially by applying the same MOS approach, skill is achieved through capturing interannual variations in Sahel rainfall (primarily related to El Niño–Southern Oscillation in the period of study), as well as the upward trend in Sahel rainfall that is observed over 1981–2008, which has been accompanied by a relative warming in the North Atlantic compared to the South Atlantic. At lead times up to six months (initialized forecasts in December), skill levels are maintained with the correlation between predicted and observed Sahel rainfall at approximately r = 0.6. While such skill levels at these long lead times are notably higher than previously achieved, further experiments, such as over the same period and with comparable AGCMs, are required for definitive attribution of the advance to the use of a coupled ocean–atmosphere modeling approach. Nonetheless, the detrended skill achieved here by the January–March initializations (r = 0.33) must require an approach that captures the evolution of the key ocean–atmosphere anomalies from boreal winter to boreal summer, and approaches that draw on persistence in ocean conditions have not previously been successful.


2005 ◽  
Vol 18 (11) ◽  
pp. 1652-1672 ◽  
Author(s):  
Bohua Huang ◽  
J. Shukla

Abstract A 110-yr simulation is conducted using a specially designed coupled ocean–atmosphere general circulation model that only allows air–sea interaction over the Atlantic Ocean within 30°S–60°N. Since the influence from the Pacific El Niño–Southern Oscillation (ENSO) over the Atlantic is removed in this run, it provides a better view of the extratropical influences on the tropical air–sea interaction within the Atlantic sector. The model results are compared with the observations that also have their ENSO components subtracted. The model reproduces the two major anomalous patterns of the sea surface temperature (SST) in the southern subtropical Atlantic (SSA) and the northern tropical Atlantic (NTA) Ocean. The SSA pattern is phase locked to the annual cycle. Its enhancement in austral summer is associated with atmospheric disturbances from the South Atlantic during late austral spring. The extratropical atmospheric disturbances induce anomalous trade winds and surface heat fluxes in its northern flank, which generate SST anomalies in the subtropics during austral summer. The forced SST anomalies then change the local sea level pressure and winds, which in turn affect the northward shift of the atmospheric disturbance and cause further SST changes in the deep Tropics during austral fall. The NTA pattern is significant throughout a year. Like the SSA pattern, the NTA pattern in boreal winter–spring is usually associated with the heat flux change caused by extratropical atmospheric disturbances, such as the North Atlantic Oscillation. The SST anomalies then feed back with the tropical atmosphere and expand equatorward. From summer to fall, however, the NTA SST anomalies are likely to persist within the subtropics for more than one season after it is generated. Our model results suggest that this feature is associated with a local feedback between the NTA SST anomalies and the atmospheric subtropical anticyclone from late boreal summer to early winter. The significance of this potential feedback in reality needs to be further examined with more observational evidence.


2013 ◽  
Vol 26 (16) ◽  
pp. 5965-5980 ◽  
Author(s):  
Joke F. Lübbecke ◽  
Michael J. McPhaden

Abstract El Niño–Southern Oscillation (ENSO) in the Pacific and the analogous Atlantic Niño mode are generated by processes involving coupled ocean–atmosphere interactions known as the Bjerknes feedback. It has been argued that the Atlantic Niño mode is more strongly damped than ENSO, which is presumed to be closer to neutrally stable. In this study the stability of ENSO and the Atlantic Niño mode is compared via an analysis of the Bjerknes stability index. This index is based on recharge oscillator theory and can be interpreted as the growth rate for coupled modes of ocean–atmosphere variability. Using observational data, an ocean reanalysis product, and output from an ocean general circulation model, the individual terms of the Bjerknes index are calculated for the first time for the Atlantic and then compared to results for the Pacific. Positive thermocline feedbacks in response to wind stress forcing favor anomaly growth in both basins, but they are twice as large in the Pacific compared to the Atlantic. Thermocline feedback is related to the fetch of the zonal winds, which is much greater in the equatorial Pacific than in the equatorial Atlantic due to larger basin size. Negative feedbacks are dominated by thermal damping of sea surface temperature anomalies in both basins. Overall, it is found that both ENSO and the Atlantic Niño mode are damped oscillators, but the Atlantic is more strongly damped than the Pacific primarily because of the weaker thermocline feedback.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hyacinth C. Nnamchi ◽  
Mojib Latif ◽  
Noel S. Keenlyside ◽  
Joakim Kjellsson ◽  
Ingo Richter

AbstractThe Atlantic Niño is the leading mode of interannual sea-surface temperature (SST) variability in the equatorial Atlantic and assumed to be largely governed by coupled ocean-atmosphere dynamics described by the Bjerknes-feedback loop. However, the role of the atmospheric diabatic heating, which can be either an indicator of the atmosphere’s response to, or its influence on the SST, is poorly understood. Here, using satellite-era observations from 1982–2015, we show that diabatic heating variability associated with the seasonal migration of the Inter-Tropical Convergence Zone controls the seasonality of the Atlantic Niño. The variability in precipitation, a measure of vertically integrated diabatic heating, leads that in SST, whereas the atmospheric response to SST variability is relatively weak. Our findings imply that the oceanic impact on the atmosphere is smaller than previously thought, questioning the relevance of the classical Bjerknes-feedback loop for the Atlantic Niño and limiting climate predictability over the equatorial Atlantic sector.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 803
Author(s):  
Ran Wang ◽  
Lin Chen ◽  
Tim Li ◽  
Jing-Jia Luo

The Atlantic Niño/Niña, one of the dominant interannual variability in the equatorial Atlantic, exerts prominent influence on the Earth’s climate, but its prediction skill shown previously was unsatisfactory and limited to two to three months. By diagnosing the recently released North American Multimodel Ensemble (NMME) models, we find that the Atlantic Niño/Niña prediction skills are improved, with the multi-model ensemble (MME) reaching five months. The prediction skills are season-dependent. Specifically, they show a marked dip in boreal spring, suggesting that the Atlantic Niño/Niña prediction suffers a “spring predictability barrier” like ENSO. The prediction skill is higher for Atlantic Niña than for Atlantic Niño, and better in the developing phase than in the decaying phase. The amplitude bias of the Atlantic Niño/Niña is primarily attributed to the amplitude bias in the annual cycle of the equatorial sea surface temperature (SST). The anomaly correlation coefficient scores of the Atlantic Niño/Niña, to a large extent, depend on the prediction skill of the Niño3.4 index in the preceding boreal winter, implying that the precedent ENSO may greatly affect the development of Atlantic Niño/Niña in the following boreal summer.


2021 ◽  
Author(s):  
Ingo Richter ◽  
Yu Kosaka ◽  
Hiroki Tokinaga ◽  
Shoichiro Kido

<p>The potential influence of the tropical Atlantic on the development of ENSO has received increased attention over recent years. In particular equatorial Atlantic variability (also known as the Atlantic zonal mode or AZM) has been shown to be anticorrelated with ENSO, i.e. cold AZM events in boreal summer (JJA) tend to be followed by El Niño in winter (DJF), and vice versa for warm AZM events. One problem with disentangling the two-way interaction between the equatorial Atlantic and Pacific is that both ENSO and the AZM tend to develop in boreal spring (MAM).</p><p>Here we use a set of GCM sensitivity experiments to quantify the strength of the Atlantic-Pacific link. The starting point is a 1000-year free-running control simulation with the GFDL CM 2.1 model. From this control simulation, we pick years in which a cold AZM event in JJA is followed by an El Niño in DJF. These years serve as initial conditions for “perfect model” prediction experiments with 10 ensemble members each. In the control experiments, the predictions evolve freely for 12 months from January 1 of each selected year. In the second set of predictions, SSTs are gradually relaxed to climatology in the tropical Atlantic, so that the cold AZM event is suppressed. In the third set of predictions, we restore the tropical Pacific SSTs to climatology, so that the El Niño event is suppressed.</p><p>The results suggest that, on average, the tropical Atlantic SST anomalies increase the strength of El Niño in the following winter by about 10-20%. If, on the other hand, El Niño development is suppressed, the amplitude of the cold AZM event also reduces by a similar amount. The results suggest that, in the context of this GCM, the influence of AZM events on ENSO development is relatively weak but not negligible. The fact that ENSO also influences the AZM in boreal spring highlights the complex two-way interaction between these two modes of variability.</p>


2021 ◽  
Author(s):  
Carolien Maria Hendrina van der Weijst ◽  
Josse Winkelhorst ◽  
Wesley de Nooijer ◽  
Anna von der Heydt ◽  
Gert-Jan Reichart ◽  
...  

Abstract. It has been hypothesized that global temperature trends are tightly linked to tropical thermocline depth, and that thermocline shoaling played a crucial role in the intensification of late Pliocene northern hemisphere glaciation. The Pliocene thermocline evolution in the Pacific Ocean is well documented and supports this hypothesis, but thermocline records from the tropical Atlantic Ocean are limited. We present new planktonic foraminiferal Mg/Ca, δ18O and δ13C records from the late Pliocene interval at Ocean Drilling Program Site 959 in the eastern equatorial Atlantic (EEA), which we use to reconstruct ocean temperatures and relative changes in salinity and thermocline depth. Data were generated using surface-dwelling Globigerinoides ruber and subsurface-dwelling Neogloboquadrina dutertrei. Reduced gradients between the surface and subsurface records indicate deepening of the EEA thermocline at the end of the Mid-Piacenzian Warm Period (mPWP; ~3.3–3.0 Ma). We connect our late Pliocene records to previously published early Pliocene δ18O data from Site 959 and compare these to the Site 1000 in the Caribbean Sea. Over the course of the Pliocene, thermocline changes in the EEA and Caribbean Sea follow similar patterns, with prominent step-wise thermocline deepening between ~5.5 and 4.0 Ma, gradual shoaling up to the mPWP, followed by minor deepening at the end of the mPWP. The tropical thermocline depth evolution of the tropical Atlantic differs from the Pacific, which is characterized by gradual basin-wide shoaling across the Pliocene. These results potentially challenge the hypothesized link between tropical thermocline depth and global climate. The mechanisms behind the periodically divergent Pacific and Atlantic thermocline movements remain speculative. We suggest that they are related to basin geometry and heterogenous temperature evolutions in regions from where thermocline waters are sourced. A positive feedback loop between source region temperature and tropical cyclone activity may have amplified tropical thermocline adjustments.


Sign in / Sign up

Export Citation Format

Share Document