scholarly journals The Scripps Coupled Ocean–Atmosphere Regional (SCOAR) Model, with Applications in the Eastern Pacific Sector

2007 ◽  
Vol 20 (3) ◽  
pp. 381-402 ◽  
Author(s):  
Hyodae Seo ◽  
Arthur J. Miller ◽  
John O. Roads

Abstract A regional coupled ocean–atmosphere model is introduced. It is designed to admit the air–sea feedbacks arising in the presence of an oceanic mesoscale eddy field. It consists of the Regional Ocean Modeling System (ROMS) and the Regional Spectral Model (RSM). Large-scale forcing is provided by NCEP/DOE reanalysis fields, which have physics consistent with the RSM. Coupling allows the sea surface temperature (SST) to influence the stability of the atmospheric boundary layer and, hence, the surface wind stress and heat flux fields. The system is denominated the Scripps Coupled Ocean–Atmosphere Regional (SCOAR) Model. The model is tested in three scenarios in the eastern Pacific Ocean sector: tropical instability waves of the eastern tropical Pacific, mesoscale eddies and fronts of the California Current System, and gap winds of the Central American coast. Recent observational evidence suggests air–sea interactions involving the oceanic mesoscale in these three regions. Evolving SST fronts are shown to drive an unambiguous response of the atmospheric boundary layer in the coupled model. This results in significant model anomalies of wind stress curl, wind stress divergence, surface heat flux, and precipitation that resemble the observations and substantiate the importance of ocean–atmosphere feedbacks involving the oceanic mesoscale.

2005 ◽  
Vol 18 (14) ◽  
pp. 2706-2723 ◽  
Author(s):  
Larry W. O’Neill ◽  
Dudley B. Chelton ◽  
Steven K. Esbensen ◽  
Frank J. Wentz

Abstract The marine atmospheric boundary layer (MABL) response to sea surface temperature (SST) perturbations with wavelengths shorter than 30° longitude by 10° latitude along the Agulhas Return Current (ARC) is described from the first year of SST and cloud liquid water (CLW) measurements from the Advanced Microwave Scanning Radiometer (AMSR) on the Earth Observing System (EOS) Aqua satellite and surface wind stress measurements from the QuikSCAT scatterometer. AMSR measurements of SST at a resolution of 58 km considerably improves upon a previous analysis that used the Reynolds SST analyses, which underestimate the short-scale SST gradient magnitude over the ARC region by more than a factor of 5. The AMSR SST data thus provide the first quantitatively accurate depiction of the SST-induced MABL response along the ARC. Warm (cold) SST perturbations produce positive (negative) wind stress magnitude perturbations, leading to short-scale perturbations in the wind stress curl and divergence fields that are linearly related to the crosswind and downwind components of the SST gradient, respectively. The magnitudes of the curl and divergence responses vary seasonally and spatially with a response nearly twice as strong during the winter than during the summer along a zonal band between 40° and 50°S. These seasonal variations closely correspond to seasonal and spatial variability of large-scale MABL stability and surface sensible heat flux estimated from NCEP reanalysis fields. SST-induced deepening of the MABL over warm water is evident in AMSR measurements of CLW. Typical annual mean differences in cloud thickness between cold and warm SST perturbations are estimated to be about 300 m.


2019 ◽  
Vol 76 (7) ◽  
pp. 2065-2082 ◽  
Author(s):  
A. Foussard ◽  
G. Lapeyre ◽  
R. Plougonven

Abstract The response of the atmospheric boundary layer to mesoscale sea surface temperature (SST) is often characterized by a link between wind stress divergence and downwind SST gradients. In this study, an idealized simulation representative of a storm track above a prescribed stationary SST field is examined in order to determine in which background wind conditions that relationship occurs. The SST field is composed of a midlatitude large-scale frontal zone and mesoscale SST anomalies. It is shown that the divergence of the surface wind can correlate either with the Laplacian of the atmospheric boundary layer temperature or with the downwind SST gradient. The first case corresponds to background situations of weak winds or of unstable boundary layers, and the response is in agreement with an Ekman balance adjustment in the boundary layer. The second case corresponds to background situations of stable boundary layers, and the response is in agreement with downward mixing of momentum. Concerning the divergence of the wind stress, it generally resembles downwind SST gradients for stable and unstable boundary layers, in agreement with past studies. For weak winds, a correlation with the temperature Laplacian is, however, found to some extent. In conclusion, our study reveals the importance of the large-scale wind conditions in modulating the surface atmospheric response with different responses in the divergences of surface wind and wind stress.


Radio Science ◽  
1985 ◽  
Vol 20 (6) ◽  
pp. 1555-1564 ◽  
Author(s):  
G. Peters ◽  
H. Hinzpeter ◽  
G. Baumann

2002 ◽  
Vol 124 (3) ◽  
pp. 169-172 ◽  
Author(s):  
Dag Myrhaug ◽  
Olav H. Slaattelid

The paper considers the effects of sea roughness and atmospheric stability on the sea surface wind stress over waves, which are in local equilibrium with the wind, by using the logarithmic boundary layer profile including a stability function, as well as adopting some commonly used sea surface roughness formulations. The engineering relevance of the results is also discussed.


2019 ◽  
Vol 148 (1) ◽  
pp. 259-287
Author(s):  
R. M. Samelson ◽  
L. W. O’Neill ◽  
D. B. Chelton ◽  
E. D. Skyllingstad ◽  
P. L. Barbour ◽  
...  

Abstract The influence of mesoscale sea surface temperature (SST) variations on wind stress and boundary layer winds is examined from coupled ocean–atmosphere numerical simulations and satellite observations of the northern California Current System. Model coupling coefficients relating the divergence and curl of wind stress and wind to downwind and crosswind SST gradients are generally smaller than observed values and vary by a factor of 2 depending on planetary boundary layer (PBL) scheme, with values larger for smoothed fields on the 0.25° observational grid than for unsmoothed fields on the 12-km model grid. Divergence coefficients are larger than curl coefficients on the 0.25° grid but not on the model grid, consistent with stronger scale dependence for the divergence response than for curl in a spatial cross-spectral analysis. Coupling coefficients for 10-m equivalent neutral stability winds are 30%–50% larger than those for 10-m wind, implying a correlated effect of surface-layer stability variations. Crosswind surface air temperature and SST gradients are more strongly coupled than downwind gradients, while the opposite is true for downwind and crosswind heat flux and SST gradients. Midlevel boundary layer wind coupling coefficients show a reversed response relative to the surface that is predicted by an analytical model; a predicted second reversal with height is not seen in the simulations. The relative values of coupling coefficients are consistent with previous results for the same PBL schemes in the Agulhas Return Current region, but their magnitudes are smaller, likely because of the effect of mean wind on perturbation heat fluxes.


2021 ◽  
Author(s):  
Pierre-Etienne Brilouet ◽  
Marie Lothon ◽  
Sandrine Bony

<p>Tradewind clouds can exhibit a wide diversity of mesoscale organizations, and the turbulence of marine atmospheric boundary layer (MABL) can exhibit coherent structures and mesoscale circulations. One of the objectives of the EUREC4A (Elucidating the role of cloud-circulation coupling in climate) field experiment was to better understand the tight interplay between the mesoscale organization of clouds, boundary-layer processes, and the large-scale environment.</p><p>During the experiment, that took place East of Barbados over the Western Tropical Atlantic Ocean in Jan-Feb 2020, the French ATR-42 research aircraft was devoted to the characterization of the cloud amount and of the subcoud layer structure. <span>During its 17 research flights, </span><span>it</span> <span>sampled a </span><span>large diversity of large scale conditions and </span><span>cloud patterns</span><span>. </span>Multiple sensors onboard t<span>he aircraft measure</span><span>d</span> <span>high-frequency </span><span>fluctuations of potential temperature, water vapour mixing ratio and wind , allowing </span><span>for </span><span>an extensive characterization </span><span> of</span><span> the turbulence </span><span>within</span><span> the subcloud layer. </span> <span>A </span><span>quality-controled and calibrated turbulence data</span><span>set</span><span> was produced </span><span>on the basis of these measurements</span><span>, which is now </span><span> available on the EUREC4A AERIS data portal.</span></p><p><span>The </span><span>MABL </span><span>turbulent </span><span>structure i</span><span>s</span><span> studied </span><span>using this dataset, </span><span>through a spectral analysis </span><span>of the vertical velocity</span><span>. Vertical profiles of characteristic length scales reveal a non-isotropic structure with a stretching of the eddies along the mean wind. The organization strength of the turbulent field is also explored </span><span>by defining</span><span> a diagnostic based on the shape of the vertical velocity spectrum. </span><span>The </span><span>structure and the degree of organization of the </span><span>subcloud layer </span><span>are</span><span> characterized for </span><span> different type</span><span>s</span><span> of mesoscale </span><span>convective </span><span>pattern </span><span>and </span><span>as a function of</span><span> the large-scale environment, </span><span>including</span> <span>near-</span><span>surface wind </span><span>and</span> <span>lower-</span><span>tropospheric</span><span> stability conditions.</span></p><p> </p>


2014 ◽  
Vol 44 (6) ◽  
pp. 1671-1688 ◽  
Author(s):  
Zhan Su ◽  
Andrew L. Stewart ◽  
Andrew F. Thompson

Abstract Recent observations suggest that the export of Antarctic Bottom Water (AABW) from the Weddell Sea has a seasonal cycle in its temperature and salinity that is correlated with annual wind stress variations. This variability has been attributed to annual vertical excursions of the isopycnals in the Weddell Gyre, modifying the water properties at the depth of the Orkney Passage. Recent studies attribute these variations to locally wind-driven barotropic dynamics in the northern Weddell Sea boundary current. This paper explores an alternative mechanism in which the isopycnals respond directly to surface Ekman pumping, which is coupled to rapidly responding mesoscale eddy buoyancy fluxes near the gyre boundary. A conceptual model of the interface that separates Weddell Sea Deep Water from Circumpolar Deep Water is described in which the bounding isopycnal responds to a seasonal oscillation in the surface wind stress. Different parameterizations of the mesoscale eddy diffusivity are tested. The model accurately predicts the observed phases of the temperature and salinity variability in relationship to the surface wind stress. The model, despite its heavy idealization, also accounts for more than 50% of the observed oscillation amplitude, which depends on the strength of the seasonal wind variability and the parameterized eddy diffusivity. These results highlight the importance of mesoscale eddies in modulating the export of AABW in narrow boundary layers around the Antarctic margins.


2019 ◽  
Vol 147 (5) ◽  
pp. 1581-1591 ◽  
Author(s):  
Qian Wang ◽  
Su-Ping Zhang ◽  
Shang-Ping Xie ◽  
Joel R. Norris ◽  
Jian-Xiang Sun ◽  
...  

Abstract A research vessel sailing across a warm eddy in the Kuroshio Extension on 13 April 2016 captured an abrupt development of stratocumulus under synoptic high pressure. Shipboard observations and results from regional atmospheric model simulations indicate that increased surface heat flux over the ocean eddy lowered surface pressure and thereby accelerated southeasterly winds. The southeasterly winds transported moisture toward the low pressure and enhanced the air–sea interface heat flux, which in turn deepened the low pressure and promoted low-level convergence and rising motion over the warm eddy. The lifting condensation level lowered and the top of the marine atmospheric boundary layer (MABL) rose, thereby aiding the development of the stratocumulus. Further experiments showed that 6°C sea surface temperature anomalies associated with the 400-km-diameter warm eddy accounted for 80% of the total ascending motion and 95% of total cloud water mixing ratio in the marine atmospheric boundary layer during the development of stratocumulus. The synthesis of in situ soundings and modeling contributes to understanding of the mechanism by which the MABL and marine stratocumulus respond to ocean eddies.


2005 ◽  
Vol 18 (13) ◽  
pp. 2344-2360 ◽  
Author(s):  
Jing-Jia Luo ◽  
Sebastien Masson ◽  
Erich Roeckner ◽  
Gurvan Madec ◽  
Toshio Yamagata

Abstract The cold tongue in the tropical Pacific extends too far west in most current ocean–atmosphere coupled GCMs (CGCMs). This bias also exists in the relatively high-resolution SINTEX-F CGCM despite its remarkable performance of simulating ENSO variations. In terms of the importance of air–sea interactions to the climatology formation in the tropical Pacific, several sensitivity experiments with improved coupling physics have been performed in order to reduce the cold-tongue bias in CGCMs. By allowing for momentum transfer of the ocean surface current to the atmosphere [full coupled simulation (FCPL)] or merely reducing the wind stress by taking the surface current into account in the bulk formula [semicoupled simulation (semi-CPL)], the warm-pool/cold-tongue structure in the equatorial Pacific is simulated better than that of the control simulation (CTL) in which the movement of the ocean surface is ignored for wind stress calculation. The reduced surface zonal current and vertical entrainment owing to the reduced easterly wind stress tend to produce a warmer sea surface temperature (SST) in the western equatorial Pacific. Consequently, the dry bias there is much reduced. The warming tendency of the SST in the eastern Pacific, however, is largely suppressed by isopycnal diffusion and meridional advection of colder SST from south of the equator due to enhanced coastal upwelling near Peru. The ENSO signal in the western Pacific and its global teleconnection in the North Pacific are simulated more realistically. The approach as adopted in the FCPL run is able to generate a correct zonal SST slope and efficiently reduce the cold-tongue bias in the equatorial Pacific. The surface easterly wind itself in the FCPL run is weakened, reducing the easterly wind stress further. This is related with a weakened zonal Walker cell in the atmospheric boundary layer over the eastern Pacific and a new global angular momentum balance of the atmosphere associated with reduced westerly wind stress over the southern oceans.


Sign in / Sign up

Export Citation Format

Share Document