How is the marine atmospheric boundary layer turbulence organized in the trades ?

Author(s):  
Pierre-Etienne Brilouet ◽  
Marie Lothon ◽  
Sandrine Bony

<p>Tradewind clouds can exhibit a wide diversity of mesoscale organizations, and the turbulence of marine atmospheric boundary layer (MABL) can exhibit coherent structures and mesoscale circulations. One of the objectives of the EUREC4A (Elucidating the role of cloud-circulation coupling in climate) field experiment was to better understand the tight interplay between the mesoscale organization of clouds, boundary-layer processes, and the large-scale environment.</p><p>During the experiment, that took place East of Barbados over the Western Tropical Atlantic Ocean in Jan-Feb 2020, the French ATR-42 research aircraft was devoted to the characterization of the cloud amount and of the subcoud layer structure. <span>During its 17 research flights, </span><span>it</span> <span>sampled a </span><span>large diversity of large scale conditions and </span><span>cloud patterns</span><span>. </span>Multiple sensors onboard t<span>he aircraft measure</span><span>d</span> <span>high-frequency </span><span>fluctuations of potential temperature, water vapour mixing ratio and wind , allowing </span><span>for </span><span>an extensive characterization </span><span> of</span><span> the turbulence </span><span>within</span><span> the subcloud layer. </span> <span>A </span><span>quality-controled and calibrated turbulence data</span><span>set</span><span> was produced </span><span>on the basis of these measurements</span><span>, which is now </span><span> available on the EUREC4A AERIS data portal.</span></p><p><span>The </span><span>MABL </span><span>turbulent </span><span>structure i</span><span>s</span><span> studied </span><span>using this dataset, </span><span>through a spectral analysis </span><span>of the vertical velocity</span><span>. Vertical profiles of characteristic length scales reveal a non-isotropic structure with a stretching of the eddies along the mean wind. The organization strength of the turbulent field is also explored </span><span>by defining</span><span> a diagnostic based on the shape of the vertical velocity spectrum. </span><span>The </span><span>structure and the degree of organization of the </span><span>subcloud layer </span><span>are</span><span> characterized for </span><span> different type</span><span>s</span><span> of mesoscale </span><span>convective </span><span>pattern </span><span>and </span><span>as a function of</span><span> the large-scale environment, </span><span>including</span> <span>near-</span><span>surface wind </span><span>and</span> <span>lower-</span><span>tropospheric</span><span> stability conditions.</span></p><p> </p>

2005 ◽  
Vol 18 (5) ◽  
pp. 737-753 ◽  
Author(s):  
Hollis E. Pyatt ◽  
Bruce A. Albrecht ◽  
Chris Fairall ◽  
J. E. Hare ◽  
Nicholas Bond ◽  
...  

Abstract The structure of the marine atmospheric boundary layer (MABL) over the tropical eastern Pacific Ocean is influenced by spatial variations of sea surface temperature (SST) in the region. As the MABL air is advected across a strong SST gradient associated with the cold tongue–ITCZ complex (CTIC), substantial changes occur in the thermodynamic structure, surface fluxes, and cloud properties. This study attempts to define and explain the variability in the MABL structure and clouds over the CTIC. Using data collected on research cruises from the fall seasons of 1999–2001, composite soundings were created for both the cold and warm sides of the SST front to describe the mean atmospheric boundary layer (ABL) structure and its evolution across this front. The average difference in SST across this front was ∼6°C; much of this difference was concentrated in a band only ∼50 km wide. During the fall seasons, on the cold side of the gradient, a well-defined inversion exists in all years. Below this inversion, both fair-weather cumulus and stratiform clouds are observed. As the MABL air moves over the SST front to warmer waters, the inversion weakens and increases in height. The MABL also moistens and eventually supports deeper convection over the ITCZ. Both the latent and sensible heat fluxes increase dramatically across the SST front because of both an increase in SST and surface wind speed. Cloudiness is variable on the cold side of the SST front ranging from 0.2 to 0.9 coverage. On the warm side, cloud fraction was quite constant in time, with values generally greater than 0.8. The highest cloud-top heights (>3 km) are found well north of the SST front, indicating areas of deeper convection. An analysis using energy and moisture budgets identifies the roles of various physical processes in the MABL evolution.


1998 ◽  
Vol 37 (3) ◽  
pp. 308-324 ◽  
Author(s):  
Stephen P. Palm ◽  
Denise Hagan ◽  
Geary Schwemmer ◽  
S. H. Melfi

Abstract A new technique for retrieving near-surface moisture and profiles of mixing ratio and potential temperature through the depth of the marine atmospheric boundary layer (MABL) using airborne lidar and multichannel infrared radiometer data is presented. Data gathered during an extended field campaign over the Atlantic Ocean in support of the Lidar In-space Technology Experiment are used to generate 16 moisture and temperature retrievals that are then compared with dropsonde measurements. The technique utilizes lidar-derived statistics on the height of cumulus clouds that frequently cap the MABL to estimate the lifting condensation level. Combining this information with radiometer-derived sea surface temperature measurements, an estimate of the near-surface moisture can be obtained to an accuracy of about 0.8 g kg−1. Lidar-derived statistics on convective plume height and coverage within the MABL are then used to infer the profiles of potential temperature and moisture with a vertical resolution of 20 m. The rms accuracy of derived MABL average moisture and potential temperature is better than 1 g kg−1 and 1°C, respectively. The method relies on the presence of a cumulus-capped MABL, and it was found that the conditions necessary for use of the technique occurred roughly 75% of the time. The synergy of simple aerosol backscatter lidar and infrared radiometer data also shows promise for the retrieval of MABL moisture and temperature from space.


2020 ◽  
Author(s):  
Théo Brivoal ◽  
Guillaume Samson ◽  
Hervé Giordani ◽  
Romain Bourdallé-Badie ◽  
Florian Lemarié ◽  
...  

Abstract. A one-dimensional Atmospheric Boundary Layer (ABL1D) is coupled with the NEMO ocean model and implemented over the Iberian–Biscay–Ireland (IBI) area at 1/36° resolution to investigate the retroactions between the surface currents and the atmosphere, namely the Current FeedBack (CFB) in this region of low mesoscale activity. The ABL1D-NEMO coupled model is forced by a large-scale atmospheric reanalysis (ERA-Interim) and integrated over the period 2016–2017. The mechanisms of eddy kinetic energy damping and ocean upper-layers re-energization are realistically simulated, meaning that the CFB is properly represented by the model. In particular, the dynamical coupling coefficients between the curls of surface stress/wind and current are in agreement with the literature. The effects of CFB on the kinetic energy (KE) are then investigated through a KE budget. We show that the KE decrease induced by the CFB is significant down to 1500 m. Near the surface (0–300 m), most of the KE decrease can be explained by a reduction of the surface wind work by 4 %. At depth (300–2000 m), the CFB induce a reduction of the pressure work (i.e: the PE to KE conversion) associated with a reduction of KE which is significant down to 1500 m. We show that this reduction of KE at depth can be explained by CFB-induced Ekman pumping above eddies that weakens the mesoscale activity and this over the whole water column.


2015 ◽  
Vol 72 (8) ◽  
pp. 3178-3198 ◽  
Author(s):  
Adam H. Monahan ◽  
Tim Rees ◽  
Yanping He ◽  
Norman McFarlane

Abstract A long time series of temporally high-resolution wind and potential temperature data from the 213-m tower at Cabauw in the Netherlands demonstrates the existence of two distinct regimes of the stably stratified nocturnal boundary layer at this location. Hidden Markov model (HMM) analysis is used to objectively characterize these regimes and classify individual observed states. The first regime is characterized by strongly stable stratification, large wind speed differences between 10 and 200 m, and relatively weak turbulence. The second is associated with near-neutral stratification, weaker wind speed differences between 10 and 200 m, and relatively strong turbulence. In this second regime, the state of the boundary layer is similar to that during the day. The occupation statistics of these regimes are shown to covary with the large-scale pressure gradient force and cloud cover such that the first regime predominates under clear skies with weak geostrophic wind speed and the second regime predominates under conditions of extensive cloud cover or large geostrophic wind speed. These regimes are not distinguished by standard measures of stability, such as the Obukhov length or the bulk Richardson number. Evidence is presented that the mechanism generating these distinct regimes is associated with a previously documented feedback resulting from the existence of an upper limit on the maximum downward heat flux that can be sustained for a given near-surface wind speed.


2018 ◽  
Vol 176 ◽  
pp. 02012
Author(s):  
Songhua Wu ◽  
Qichao Wang ◽  
Bingyi Liu ◽  
Jintao Liu ◽  
Kailin Zhang ◽  
...  

A compact UAV-borne Coherent Doppler Lidar (UCDL) has been developed at the Ocean University of China for the observation of wind profile and boundary layer structure in Marine Atmospheric Boundary Layer (MABL). The design, specifications and motion-correction methodology of the UCDL are presented. Preliminary results of the first flight campaign in Hailing Island in December 2016 is discussed.


2005 ◽  
Vol 18 (14) ◽  
pp. 2706-2723 ◽  
Author(s):  
Larry W. O’Neill ◽  
Dudley B. Chelton ◽  
Steven K. Esbensen ◽  
Frank J. Wentz

Abstract The marine atmospheric boundary layer (MABL) response to sea surface temperature (SST) perturbations with wavelengths shorter than 30° longitude by 10° latitude along the Agulhas Return Current (ARC) is described from the first year of SST and cloud liquid water (CLW) measurements from the Advanced Microwave Scanning Radiometer (AMSR) on the Earth Observing System (EOS) Aqua satellite and surface wind stress measurements from the QuikSCAT scatterometer. AMSR measurements of SST at a resolution of 58 km considerably improves upon a previous analysis that used the Reynolds SST analyses, which underestimate the short-scale SST gradient magnitude over the ARC region by more than a factor of 5. The AMSR SST data thus provide the first quantitatively accurate depiction of the SST-induced MABL response along the ARC. Warm (cold) SST perturbations produce positive (negative) wind stress magnitude perturbations, leading to short-scale perturbations in the wind stress curl and divergence fields that are linearly related to the crosswind and downwind components of the SST gradient, respectively. The magnitudes of the curl and divergence responses vary seasonally and spatially with a response nearly twice as strong during the winter than during the summer along a zonal band between 40° and 50°S. These seasonal variations closely correspond to seasonal and spatial variability of large-scale MABL stability and surface sensible heat flux estimated from NCEP reanalysis fields. SST-induced deepening of the MABL over warm water is evident in AMSR measurements of CLW. Typical annual mean differences in cloud thickness between cold and warm SST perturbations are estimated to be about 300 m.


2019 ◽  
pp. 0309524X1988092
Author(s):  
Mohamed Marouan Ichenial ◽  
Abdellah El-Hajjaji ◽  
Abdellatif Khamlichi

The assessment of climatological site conditions, airflow characteristics, and the turbulence affecting wind turbines is an important phase in developing wake engineering models. A method of modeling atmospheric boundary layer structure under atmospheric stability effects is crucial for accurate evaluation of the spatial scale of modern wind turbines, but by themselves, they are incapable to account for the varying large-scale weather conditions. As a result, combining lower atmospheric models with mesoscale models is required. In order to realize a reasonable approximation of initial atmospheric inflow condition used for wake identification behind an NREL 5-MW wind turbine, different vertical wind profile models on equilibrium conditions are tested and evaluated in this article. Wind farm simulator solvers require massive computing resources and forcing mechanisms tendencies inputs from weather forecast models. A three-dimensional Flow Redirection and Induction in Steady-state engineering model was developed for simulating and optimizing the wake losses of different rows of wind turbines under different stability stratifications. The obtained results were compared to high-fidelity simulation data generated by the famous Simulator for Wind Farm Applications. This work showed that a significant improvement related to atmospheric boundary layer structure can be made to develop accurate engineering wake models in order to reduce wake losses.


Sign in / Sign up

Export Citation Format

Share Document