The Role of the Indonesian Throughflow in the Indo–Pacific Climate Variability in the GFDL Coupled Climate Model

2007 ◽  
Vol 20 (11) ◽  
pp. 2434-2451 ◽  
Author(s):  
Qian Song ◽  
Gabriel A. Vecchi ◽  
Anthony J. Rosati

Abstract The impacts of the Indonesian Throughflow (ITF) on the tropical Indo–Pacific climate, particularly on the character of interannual variability, are explored using a coupled general circulation model (CGCM). A pair of CGCM experiments—a control experiment with an open ITF and a perturbation experiment in which the ITF is artificially closed—is integrated for 200 model years, with the 1990 values of trace gases. The closure of the ITF results in changes to the mean oceanic and atmospheric conditions throughout the tropical Indo–Pacific domain as follows: surface temperatures in the eastern tropical Pacific (Indian) Ocean warm (cool), the near-equatorial Pacific (Indian) thermocline flattens (shoals), Indo–Pacific warm-pool precipitation shifts eastward, and there are relaxed trade winds over the tropical Pacific and anomalous surface easterlies over the equatorial Indian Ocean. The character of the oceanic changes is similar to that described by ocean-only model experiments, though the amplitude of many features in the tropical Indo–Pacific is amplified in the CGCM experiments. In addition to the mean-state changes, the character of tropical Indo–Pacific interannual variability is substantially modified. Interannual variability in the equatorial Pacific and the eastern tropical Indian Ocean is substantially intensified by the closure of the ITF. In addition to becoming more energetic, El Niño–Southern Oscillation (ENSO) exhibits a shorter time scale of variability and becomes more skewed toward its warm phase (stronger and more frequent warm events). The structure of warm ENSO events changes; the anomalies of sea surface temperature (SST), precipitation, and surface westerly winds are shifted to the east and the meridional extent of surface westerly anomalies is larger. In the eastern tropical Indian Ocean, the interannual SST variability off the coast of Java–Sumatra is noticeably amplified by the occurrence of much stronger cooling events. Closing the ITF shoals the eastern tropical Indian Ocean thermocline, which results in stronger cooling events through enhanced atmosphere–thermocline coupled feedbacks. Changes to the interannual variability caused by the ITF closure rectify into mean-state changes in tropical Indo–Pacific conditions. The modified Indo–Pacific interannual variability projects onto the mean-state differences between the ITF open and closed scenarios, rectifying into mean-state differences. These results suggest that CGCMs need to reasonably simulate the ITF in order to successfully represent not just the mean climate, but its variations as well.

2021 ◽  
pp. 1-50
Author(s):  
Ruidan Chen ◽  
Zhiping Wen ◽  
Riyu Lu ◽  
Wenjun Liu

AbstractThis study reveals the interdecadal changes in the interannual variability of the summer temperature over Northeast Asia (NEA), which presents an enhancement around the early 1990s and a reduction after the mid-2000s. The stronger NEA temperature variability after the early 1990s is favored by the enhanced influence of the Pacific–Japan (PJ) teleconnection, which is remotely modulated by the southeastern tropical Indian Ocean (SETIO). After the early 1990s, the mean state over the SETIO presents relatively warmer SST and ascending motion, favoring a good relationship between the local SST and convection. Therefore, the SETIO SST could prominently influence the local convection and subsequently modulate the convection over the western North Pacific (WNP) via a cross-equatorial overturning circulation. The abnormal convection over the WNP further triggers the PJ teleconnection to influence NEA. However, these ocean–atmosphere processes disappear before the early 1990s. In this period, the mean state over the SETIO features relatively colder SST and subsiding motion, accompanied by a poor relationship between the local SST and convection. Therefore, the variability of convection over the SETIO is weak, thus the atmospheric variability over the WNP is also weakened and the PJ teleconnection presents a different distribution that could not influence NEA. The reduced variability of NEA temperature after the mid-2000s is related to the feeble influence of the PJ teleconnection and the reduced variability of the SETIO SST, which is modulated by the SST over the tropical central–eastern Pacific during the preceding winter to spring.


2011 ◽  
Vol 24 (14) ◽  
pp. 3593-3608 ◽  
Author(s):  
Dongliang Yuan ◽  
Jing Wang ◽  
Tengfei Xu ◽  
Peng Xu ◽  
Zhou Hui ◽  
...  

Abstract Controlled numerical experiments using ocean-only and ocean–atmosphere coupled general circulation models show that interannual sea level depression in the eastern Indian Ocean during the Indian Ocean dipole (IOD) events forces enhanced Indonesian Throughflow (ITF) to transport warm water from the upper-equatorial Pacific Ocean to the Indian Ocean. The enhanced transport produces elevation of the thermocline and cold subsurface temperature anomalies in the western equatorial Pacific Ocean, which propagate to the eastern equatorial Pacific to induce significant coupled evolution of the tropical Pacific oceanic and atmospheric circulation. Analyses suggest that the IOD-forced ITF transport anomalies are about the same amplitudes as those induced by the Pacific ENSO. Results of the coupled model experiments suggest that the anomalies induced by the IOD persist in the equatorial Pacific until the year following the IOD event, suggesting the importance of the oceanic channel in modulating the interannual climate variations of the tropical Pacific Ocean at the time lag beyond one year.


2013 ◽  
Vol 26 (9) ◽  
pp. 2845-2861 ◽  
Author(s):  
Dongliang Yuan ◽  
Hui Zhou ◽  
Xia Zhao

Abstract The authors’ previous dynamical study has suggested a link between the Indian and Pacific Ocean interannual climate variations through the transport variations of the Indonesian Throughflow. In this study, the consistency of this oceanic channel link with observations is investigated using correlation analyses of observed ocean temperature, sea surface height, and surface wind data. The analyses show significant lag correlations between the sea surface temperature anomalies (SSTA) in the southeastern tropical Indian Ocean in fall and those in the eastern Pacific cold tongue in the following summer through fall seasons, suggesting potential predictability of ENSO events beyond the period of 1 yr. The dynamics of this teleconnection seem not through the atmospheric bridge, because the wind anomalies in the far western equatorial Pacific in fall have insignificant correlations with the cold tongue anomalies at time lags beyond one season. Correlation analyses between the sea surface height anomalies (SSHA) in the southeastern tropical Indian Ocean and those over the Indo-Pacific basin suggest eastward propagation of the upwelling anomalies from the Indian Ocean into the equatorial Pacific Ocean through the Indonesian Seas. Correlations in the subsurface temperature in the equatorial vertical section of the Pacific Ocean confirm the propagation. In spite of the limitation of the short time series of observations available, the study seems to suggest that the ocean channel connection between the two basins is important for the evolution and predictability of ENSO.


2021 ◽  
Author(s):  
Brady Ferster ◽  
Alexey Fedorov ◽  
Juliette Mignot ◽  
Eric Guilyardi

<p>Since the start of the 21st century, El Niño-Southern Oscillation (ENSO) variability has changed, supporting generally weaker Central Pacific El Niño events. Recent studies suggest that stronger trade winds in the equatorial Pacific could be a key driving force contributing to this shift. One possible mechanism to drive such changes in the mean tropical Pacific climate state is the enhanced warming trends in the tropical Indian Ocean (TIO) relative to the rest of the tropics. TIO warming can affect the Walker circulation in both the Pacific and Atlantic basins by inducing quasi-stationary Kelvin and Rossby wave patterns. Using the latest coupled-model from Insitut Pierre Simon Laplace (IPSL-CM6), ensemble experiments are conducted to investigate the effect of TIO sea surface temperature (SST) on ENSO variability. Applying a weak SST nudging over the TIO region, in four ensemble experiments we change mean Indian ocean SST by -1.4°C, -0.7°C, +0.7°C, and +1.4°C and find that TIO warming changes the magnitude of the mean equatorial Pacific zonal wind stress proportionally to the imposed forcing, with stronger trades winds corresponding to a warmer TIO. Surprisingly, ENSO variability increases in both TIO cooling and warming experiments, relative to the control. While a stronger ENSO for weaker trade winds, associated with TIO cooling, is expected from previous studies, we argue that the ENSO strengthening for stronger trade winds, associated with TIO cooling, is related to the induced changes in ocean stratification. We illustrate this effect by computing different contributions to the Bjerknes stability index. Thus, our results suggest that the tropical Indian ocean temperatures are an important regulator of TIO mean state and ENSO dynamics.</p>


2007 ◽  
Vol 20 (2) ◽  
pp. 203-217 ◽  
Author(s):  
Sang-Wook Yeh ◽  
Ben P. Kirtman

Abstract Four climate system models are chosen here for an analysis of ENSO amplitude changes in 4 × CO2 climate change projections. Despite the large changes in the tropical Pacific mean state, the changes in ENSO amplitude are highly model dependant. To investigate why similar mean state changes lead to very different ENSO amplitude changes, the characteristics of sea surface temperature anomaly (SSTA) variability simulated in two coupled general circulation models (CGCMs) are analyzed: the Meteorological Research Institute (MRI) and Geophysical Fluid Dynamics Laboratory (GFDL) models. The skewed distribution of tropical Pacific SSTA simulated in the MRI model suggests the importance of nonlinearities in the ENSO physics, whereas the GFDL model lies in the linear regime. Consistent with these differences in ENSO regime, the GFDL model is insensitive to the mean state changes, whereas the MRI model is sensitive to the mean state changes associated with the 4 × CO2 scenario. Similarly, the low-frequency modulation of ENSO amplitude in the GFDL model is related to atmospheric stochastic forcing, but in the MRI model the amplitude modulation is insensitive to the noise forcing. These results suggest that the understanding of changes in ENSO statistics among various climate change projections is highly dependent on whether the model ENSO is in the linear or nonlinear regime.


2021 ◽  
pp. 1-49
Author(s):  
Xieyuan Wang ◽  
Tim Li ◽  
Chao He

AbstractThrough the diagnosis of 29 Atmospheric Model Inter-comparison Project (AMIP) experiments from the CMIP5 inter-comparison project, we investigate the impact of the mean state on simulated western North Pacific anomalous anticyclone (WNPAC) during El Niño decaying summer. The result indicates that the inter-model difference of the JJA mean precipitation in the Indo-western Pacific warm pool is responsible for the difference of the WNPAC. During the decaying summer of an Eastern Pacific (EP) type El Niño, a model that simulates excessive mean rainfall over the western North Pacific (WNP) reproduces a stronger WNPAC response, through an enhanced local convection-circulation-moisture feedback. The intensity of the simulated WNPAC during the decay summer of a Central Pacific (CP) type El Niño, on the other hand, depends on the mean precipitation over the tropical Indian Ocean. The distinctive WNPAC-mean precipitation relationships between the EP and CP El Niño result from different anomalous SST patterns in the WNP. While the local SST anomaly plays an active role in maintaining the WNPAC during the EP El Niño, it plays a passive role during the CP El Niño. As a result, only the mean-state precipitation/moisture field in the tropical Indian Ocean modulates the circulation anomaly in the WNP in the latter case.


2012 ◽  
Vol 40 (3-4) ◽  
pp. 743-759 ◽  
Author(s):  
M. G. Keerthi ◽  
M. Lengaigne ◽  
J. Vialard ◽  
C. de Boyer Montégut ◽  
P. M. Muraleedharan

2021 ◽  
pp. 1-39
Author(s):  
Lei Zhang ◽  
Weiqing Han ◽  
Zeng-Zhen Hu

AbstractAn unprecedented extreme positive Indian Ocean Dipole event (pIOD) occurred in 2019, which has caused widespread disastrous impacts on countries bordering the Indian Ocean, including the East African floods and vast bushfires in Australia. Here we investigate the causes for the 2019 pIOD by analyzing multiple observational datasets and performing numerical model experiments. We find that the 2019 pIOD is triggered in May by easterly wind bursts over the tropical Indian Ocean associated with the dry phase of the boreal summer intraseasonal oscillation, and sustained by the local atmosphere-ocean interaction thereafter. During September-November, warm sea surface temperature anomalies (SSTA) in the central-western tropical Pacific further enhance the Indian Ocean’s easterly winds, bringing the pIOD to an extreme magnitude. The central-western tropical Pacific warm SSTA is strengthened by two consecutive Madden Julian Oscillation (MJO) events that originate from the tropical Indian Ocean. Our results highlight the important roles of cross-basin and cross-timescale interactions in generating extreme IOD events. The lack of accurate representation of these interactions may be the root for a short lead time in predicting this extreme pIOD with a state-of-the-art climate forecast model.


Sign in / Sign up

Export Citation Format

Share Document