scholarly journals A Comparison of in Situ, Reanalysis, and Satellite Water Budgets over the Upper Colorado River Basin

2013 ◽  
Vol 14 (3) ◽  
pp. 888-905 ◽  
Author(s):  
Rebecca A. Smith ◽  
Christian D. Kummerow

Abstract Using in situ, reanalysis, and satellite-derived datasets, surface and atmospheric water budgets of the Upper Colorado River basin are analyzed. All datasets capture the seasonal cycle for each water budget component. For precipitation, all products capture the interannual variability, though reanalyses tend to overestimate in situ while satellite-derived precipitation underestimates. Most products capture the interannual variability of evapotranspiration (ET), though magnitudes differ among the products. Variability and magnitude among storage volume change products widely vary. With regards to the surface water budget, the strongest connections exist among precipitation, ET, and soil moisture, while snow water equivalent (SWE) is best correlated with runoff. Using in situ precipitation estimates, the Max Planck Institute (MPI) ET estimates, and accumulated runoff, changes in storage are calculated and compare well with estimated changes in storage calculated using SWE, reservoir, and the Climate Prediction Center’s soil moisture. Using in situ precipitation estimates, MPI ET estimates, and atmospheric divergence estimates from the European Centre for Medium-Range Weather Forecasts Interim Re-Analysis (ERA-Interim) results in a long-term atmospheric storage change estimate of −73 mm. Long-term surface storage estimates combined with long-term runoff come close to balancing with long-term atmospheric convergence from ERA-Interim. Increasing the MPI ET by 5% leads to a better balance between surface storage changes, runoff, and atmospheric convergence. It also brings long-term atmospheric storage changes to a better balance at +13 mm.

2021 ◽  
pp. 1-47
Author(s):  
Siyu Zhao ◽  
Rong Fu ◽  
Yizhou Zhuang ◽  
Gaoyun Wang

AbstractWe have developed two statistical models for extended seasonal predictions of the Upper Colorado River Basin (UCRB) natural streamflow during April–July: a stepwise linear regression (reduced to a simple regression with one predictor) and a neural network model. Monthly, basin-averaged soil moisture, snow water equivalent (SWE), precipitation, and the Pacific sea surface temperature (SST) are selected as potential predictors. Pacific SST Predictors (PSPs) are derived from a dipole pattern over the Pacific (30°S–65°N) that is correlated with the lagging streamflow. For both models, the correlation between the hindcasted and observed streamflow exceeds 0.60 for lead times less than four months using soil moisture, SWE, and precipitation as predictors. This correlation is higher than that of an autoregression model (correlation ~0.50). Since these land-surface and atmospheric variables have no statistically significant correlations with the streamflow, PSPs are then incorporated into the models. The two models have a correlation of ~0.50 using PSPs alone for lead times from six to nine months, and such skills are probably associated with stronger correlation between SST and streamflow in recent decades. The similar prediction skills between the two models suggest a largely linear system between SST and streamflow. Four predictors together can further improve short-lead prediction skills (correlation ~0.80). Therefore, our results confirm the advantage of the Pacific SST information in predicting the UCRB streamflow with a long lead time, and can provide useful climate information for water supply planning and decisions.


2015 ◽  
Vol 51 (2) ◽  
pp. 1182-1202 ◽  
Author(s):  
Yuqiong Liu ◽  
Christa D. Peters-Lidard ◽  
Sujay V. Kumar ◽  
Kristi R. Arsenault ◽  
David M. Mocko

Sign in / Sign up

Export Citation Format

Share Document