scholarly journals Surface Solar Radiation in North America: A Comparison of Observations, Reanalyses, Satellite, and Derived Products*

2015 ◽  
Vol 17 (1) ◽  
pp. 401-420 ◽  
Author(s):  
Andrew G. Slater

Abstract Observations of daily surface solar or shortwave radiation data from over 4000 stations have been gathered, covering much of the continental United States as well as portions of Alberta and British Columbia, Canada. The quantity of data increases almost linearly from 1998, when only several hundred stations had data. A quality-control procedure utilizing threshold values along with computing the clear-sky radiation envelope for individual stations was implemented to both screen bad data and rescue informative data. Over two-thirds of the observations are seen as acceptable. There are 15 different surface solar radiation products assessed relative to observations, including reanalyses [Twentieth-Century Reanalysis (20CR), CFS Reanalysis and Reforecast (CFSRR), ERA-Interim, Japanese 55-year Reanalysis Project (JRA-55), MERRA, NARR, and NCEP–NCAR Reanalysis 1 (NCEP-1)], derived products [observations from the CRU and NCEP-1 (CRU–NCEP); Daily Surface Weather and Climatological Summaries (Daymet); Global Land Data Assimilation System, version 1 (GLDAS-1); Global Soil Wetness Project Phase 3 (GSWP3); Multiscale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP); and phase 2 of the North American Land Data Assimilation System (NLDAS-2)], and two satellite products (CERES and GOES). All except the CERES product have daily or finer temporal resolution. The RMSE of spatial biases is greater than 18 W m−2 for 13 of the 15 products over the summer season (June–August). None of the daily resolution products fulfill all three desirable criteria of low (<5%) annual or seasonal bias, high correlation with observed cloudiness, and correct distribution of clear-sky radiation. Some products display vestiges of underlying algorithm issues [e.g., from the Mountain Microclimate Simulation Model, version 4.3 (MTCLIM 4.3)] or bias-correction methods. A new bias-correction method is introduced that preserves clear-sky radiation values and better replicates cloudiness statistics. The current quantity of data over the continental United States suggests that a solar radiation product based on, or enhanced with, observations is feasible.

2020 ◽  
Author(s):  
Anthony Mucia ◽  
Clément Albergel ◽  
Bertrand Bonan ◽  
Yongjun Zheng ◽  
Jean-Christophe Calvet

<p>LDAS-Monde is a global Land Data Assimilation System developed in the research department of Météo-France (CNRM) to monitor Land Surface Variables (LSVs) at various scales, from regional to global. With LDAS-Monde, it is possible to assimilate satellite derived observations of Surface Soil Moisture (SSM) and Leaf Area Index (LAI) e.g. from the Copernicus Global Land Service (CGLS). It is an offline system normally driven by atmospheric reanalyses such as ECMWF ERA5.</p><p>In this study we investigate LDAS-Monde ability to use atmospheric forecasts to predict LSV states up to weeks in advance. In addition to the accuracy of the forecast predictions, the impact of the initialization on the LSVs forecast is addressed. To perform this study, LDAS-Monde is forced by a fifteen-day forecast from ECMWF for the 2017-2018 period over the Contiguous United States (CONUS) at 0.2<sup>o</sup> x 0.2<sup>o</sup> spatial resolution. These LSVs forecasts are initialized either by the model alone (LDAS-Monde open-loop, no assimilation, Fc_ol) or by the analysis (assimilation of SSM and LAI, Fc_an). These two sets of forecast are then assessed using satellite derived observations of SSM and LAI, evapotranspiration estimates, as well as in situ measurements of soil moisture from the U.S. Climate Reference Network (USCRN). Results indicate that for the three evaluation variables (SSM, LAI, and evapotranspiration), LDAS-Monde provides reasonably accurate predictions two weeks in advance. Additionally, the initial conditions are shown to make a positive impact with respect to LAI, evapotranspiration, and deeper layers of soil moisture when using Fc_an. Moreover, this impact persists in time, particularly for vegetation related variables. Other model variables (such as runoff and drainage) are also affected by the initial conditions. Future work will focus on the transfer of this predictive information from a research to stakeholder tool.</p>


2020 ◽  
Vol 12 (12) ◽  
pp. 2020 ◽  
Author(s):  
Anthony Mucia ◽  
Bertrand Bonan ◽  
Yongjun Zheng ◽  
Clément Albergel ◽  
Jean-Christophe Calvet

LDAS-Monde is a global land data assimilation system (LDAS) developed by Centre National de Recherches Météorologiques (CNRM) to monitor land surface variables (LSV) at various scales, from regional to global. With LDAS-Monde, it is possible to jointly assimilate satellite-derived observations of surface soil moisture (SSM) and leaf area index (LAI) into the interactions between soil biosphere and atmosphere (ISBA) land surface model (LSM) in order to analyze the soil moisture profile together with vegetation biomass. In this study, we investigate LDAS-Monde’s ability to predict LSV states up to two weeks in the future using atmospheric forecasts. In particular, the impact of the initialization, and the evolution of the forecasted variables in the LSM are addressed. LDAS-Monde is an offline system normally driven by atmospheric reanalysis, but in this study is forced by atmospheric forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) for the 2017–2018 period over the contiguous United States (CONUS) at a 0.2° × 0.2° spatial resolution. These LSV forecasts are initialized either by the model alone (LDAS-Monde open-loop, without assimilation) or by the analysis (assimilation of SSM and LAI). These two forecasts are then evaluated using satellite-derived observations of SSM and LAI, evapotranspiration (ET) estimates, as well as in situ measurements of soil moisture from the U.S. Climate Reference Network (USCRN). Results indicate that for the three evaluation variables (SSM, LAI, and ET), LDAS-Monde provides reasonably accurate and consistent predictions two weeks in advance. Additionally, the initial conditions after assimilation are shown to make a positive impact with respect to LAI and ET. This impact persists in time for these two vegetation-related variables. Many model variables, such as SSM, root zone soil moisture (RZSM), LAI, ET, and drainage, remain relatively consistent as the forecast lead time increases, while runoff is highly variable.


2005 ◽  
Vol 6 (5) ◽  
pp. 573-598 ◽  
Author(s):  
Jon Gottschalck ◽  
Jesse Meng ◽  
Matt Rodell ◽  
Paul Houser

Abstract Precipitation is arguably the most important meteorological forcing variable in land surface modeling. Many types of precipitation datasets exist (with various pros and cons) and include those from atmospheric data assimilation systems, satellites, rain gauges, ground radar, and merged products. These datasets are being evaluated in order to choose the most suitable precipitation forcing for real-time and retrospective simulations of the Global Land Data Assimilation System (GLDAS). This paper first presents results of a comparison for the period from March 2002 to February 2003. Later, GLDAS simulations 14 months in duration are analyzed to diagnose impacts on GLDAS land surface states when using the Mosaic land surface model (LSM). A comparison of seasonal total precipitation for the continental United States (CONUS) illustrates that the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) has the closest agreement with a CPC rain gauge dataset for all seasons except winter. The European Centre for Medium-Range Weather Forecasts (ECMWF) model performs the best of the modeling systems. The satellite-only products [the Tropical Rainfall Measuring Mission (TRMM) Real-time Multi-satellite Precipitation Analysis and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN)] suffer from a few deficiencies—most notably an overestimation of summertime precipitation in the central United States (200–400 mm). CMAP is the most closely correlated with daily rain gauge data for the spring, fall, and winter seasons, while the satellite-only estimates perform best in summer. GLDAS land surface states are sensitive to different precipitation forcing where percent differences in volumetric soil water content (SWC) between simulations ranged from −75% to +100%. The percent differences in SWC are generally 25%–75% less than the percent precipitation differences, indicating that GLDAS and specifically the Mosaic LSM act to generally “damp” precipitation differences. Areas where the percent changes are equivalent to the percent precipitation changes, however, are evident. Soil temperature spread between GLDAS runs was considerable and ranged up to ±3.0 K with the largest impact in the western United States.


Sign in / Sign up

Export Citation Format

Share Document