Assessing Goodness of Fit to a Gamma Distribution and Estimating Future Projection on Daily Precipitation Frequency Using Regional Climate Model Simulations over Japan with and without the Influence of Tropical Cyclones

2020 ◽  
Vol 21 (12) ◽  
pp. 2997-3010
Author(s):  
Akihiko Murata ◽  
Shun-ichi I. Watanabe ◽  
Hidetaka Sasaki ◽  
Hiroaki Kawase ◽  
Masaya Nosaka

AbstractGoodness of fit in daily precipitation frequency to a gamma distribution was examined, focusing on adverse effects originating from the shortage of sampled tropical cyclones, using precipitation data with and without the influence of tropical cyclones. The data used in this study were obtained through rain gauge observations and regional climate model simulations under the RCP8.5 scenario and the present climate. An empirical cumulative distribution function (CDF), calculated from a sample of precipitation data for each location, was compared with a theoretical CDF derived from two parameters of a gamma distribution. Using these two CDFs, the root-mean-square error (RMSE) was calculated as an indicator of the goodness of fit. The RMSE exhibited a decreasing tendency when the influence of tropical cyclones was removed. This means that the empirical CDF derived from sampled precipitation more closely resembled the theoretical CDF when compared with the relationship between empirical and theoretical CDFs, including precipitation data associated with tropical cyclones. Future changes in the two parameters of the gamma distribution, without the influence of tropical cyclones, depend on regions in Japan, indicating a regional dependence on changes in the shape and scale of the CDF. The magnitude of increases in no-rain days was also dependent on regions of Japan, although the number of no-rain days increased overall. This simplified approach is useful for analyzing climate change from a broad perspective.

2013 ◽  
Vol 26 (6) ◽  
pp. 2137-2143 ◽  
Author(s):  
Douglas Maraun

Abstract Quantile mapping is routinely applied to correct biases of regional climate model simulations compared to observational data. If the observations are of similar resolution as the regional climate model, quantile mapping is a feasible approach. However, if the observations are of much higher resolution, quantile mapping also attempts to bridge this scale mismatch. Here, it is shown for daily precipitation that such quantile mapping–based downscaling is not feasible but introduces similar problems as inflation of perfect prognosis (“prog”) downscaling: the spatial and temporal structure of the corrected time series is misrepresented, the drizzle effect for area means is overcorrected, area-mean extremes are overestimated, and trends are affected. To overcome these problems, stochastic bias correction is required.


2017 ◽  
Vol 18 (3) ◽  
pp. 845-862 ◽  
Author(s):  
Yuhan Wang ◽  
Hanbo Yang ◽  
Dawen Yang ◽  
Yue Qin ◽  
Bing Gao ◽  
...  

Abstract Precipitation is a primary climate forcing factor in catchment hydrology, and its spatial distribution is essential for understanding the spatial variability of ecohydrological processes in a catchment. In mountainous areas, meteorological stations are generally too sparse to represent the spatial distribution of precipitation. This study develops a spatial interpolation method that combines meteorological observations and regional climate model (RCM) outputs. The method considers the precipitation–elevation relationship in the mountain region and the topographic effects, especially the mountain blocking effect. Furthermore, using this method, this study produced a 3-km-resolution precipitation dataset from 1960 to 2014 in the middle and upper reaches of the Heihe River basin located on the northern slope of the Qilian Mountains in the northeastern Tibetan Plateau. Cross validation based on the station observations showed that this method is reasonable. The rationality of the interpolated precipitation data was also evaluated by the catchment water balances using the observed river discharge and the actual evapotranspiration based on remote sensing. The interpolated precipitation data were compared with the China Gauge-Based Daily Precipitation Analysis product and the RCM output and was shown to be optimal. The results showed that the proposed method effectively used the information from the meteorological observations and the RCM simulations and provided the spatial distributions of daily precipitations with reasonable accuracy and high resolution, which is important for a distributed hydrological simulation at the catchment scale.


2007 ◽  
Vol 8 (6) ◽  
pp. 1382-1396 ◽  
Author(s):  
W. J. Gutowski ◽  
E. S. Takle ◽  
K. A. Kozak ◽  
J. C. Patton ◽  
R. W. Arritt ◽  
...  

Abstract Changes in daily precipitation versus intensity under a global warming scenario in two regional climate simulations of the United States show a well-recognized feature of more intense precipitation. More important, by resolving the precipitation intensity spectrum, the changes show a relatively simple pattern for nearly all regions and seasons examined whereby nearly all high-intensity daily precipitation contributes a larger fraction of the total precipitation, and nearly all low-intensity precipitation contributes a reduced fraction. The percentile separating relative decrease from relative increase occurs around the 70th percentile of cumulative precipitation, irrespective of the governing precipitation processes or which model produced the simulation. Changes in normalized distributions display these features much more consistently than distribution changes without normalization. Further analysis suggests that this consistent response in precipitation intensity may be a consequence of the intensity spectrum’s adherence to a gamma distribution. Under the gamma distribution, when the total precipitation or number of precipitation days changes, there is a single transition between precipitation rates that contribute relatively more to the total and rates that contribute relatively less. The behavior is roughly the same as the results of the numerical models and is insensitive to characteristics of the baseline climate, such as average precipitation, frequency of rain days, and the shape parameter of the precipitation’s gamma distribution. Changes in the normalized precipitation distribution give a more consistent constraint on how precipitation intensity may change when climate changes than do changes in the nonnormalized distribution. The analysis does not apply to extreme precipitation for which the theory of statistical extremes more likely provides the appropriate description.


2019 ◽  
Vol 58 (2) ◽  
pp. 269-289 ◽  
Author(s):  
Moosup Kim ◽  
Yoo-Bin Yhang ◽  
Chang-Mook Lim

AbstractThe daily precipitation data generated by dynamical models, including regional climate models, generally suffer from biases in distribution and spatial dependence. These are serious flaws if the data are intended to be applied to hydrometeorological studies. This paper proposes a scheme for correcting the biases in both aspects simultaneously. The proposed scheme consists of two steps: an aggregation step and a disaggregation step. The first one aims to obtain a smoothed precipitation pattern that must be retained in correcting the bias, and the second aims to make up for the deficient spatial variation of the smoothed pattern. In both steps, the Gaussian copula plays important roles since it not only provides a feasible way to correct the spatial correlation of model simulations but also can be extended for large-dimension cases by imposing a covariance function on its correlation structure. The proposed scheme is applied to the daily precipitation data generated by a regional climate model. We can verify that the biases are satisfactorily corrected by examining several statistics of the corrected data.


2013 ◽  
Vol 52 (1) ◽  
pp. 82-101 ◽  
Author(s):  
Roger Bordoy ◽  
Paolo Burlando

AbstractThis study presents a method to correct regional climate model (RCM) outputs using observations from automatic weather stations. The correction applies a nonlinear procedure, which recently appeared in the literature, to both precipitation and temperature on a monthly basis in a region of complex orography. To assess the temporal stability of such a correction, the correcting parameters of each variable are investigated using different time periods within the observational record. The RCM simulations used in this study to evaluate the bias-correction method are the publicly available “Reg-CM3” experiments from the Ensemble-Based Predictions of Climate Changes and Their Impacts (ENSEMBLES) project. They provide daily precipitation and temperature time series on a raster with spatial resolution of 0.22°. The analysis is performed in the Rhone catchment, located in southwestern Switzerland and characterized by highly complex orography. The results show that the nonlinear bias correction increases dramatically the accuracy not only of the RCM mean daily precipitation and temperature but also of values across the entire domain of the probability distribution. Moreover, the correction parameters seem to be reasonably independent from the sample used for their calibration, especially in the case of temperature. The good performance of the method over the considered mountainous region during the evaluation period points to the suitability of this technique for correcting RCM biases regardless of the stationarity of the climate and, therefore, also for future climate and in regions characterized by marked orography.


Sign in / Sign up

Export Citation Format

Share Document