scholarly journals Variability of the Turbulent Kinetic Energy Dissipation along the A25 Greenland–Portugal Transect Repeated from 2002 to 2012

2016 ◽  
Vol 46 (7) ◽  
pp. 1989-2003 ◽  
Author(s):  
Bruno Ferron ◽  
Florian Kokoszka ◽  
Herlé Mercier ◽  
Pascale Lherminier ◽  
Thierry Huck ◽  
...  

AbstractThe variability of the turbulent kinetic energy dissipation due to internal waves is quantified using a finescale parameterization applied to the A25 Greenland–Portugal transect repeated every two years from 2002 to 2012. The internal wave velocity shear and strain are estimated for each cruise at 91 stations from full depth vertical profiles of density and velocity. The 2002–12 averaged dissipation rate 〈ε2002–2012〉 in the upper ocean lays in the range 1–10 × 10−10 W kg−1. At depth, 〈ε2002–2012〉 is smaller than 1 × 10−10 W kg−1 except over rough topography found at the continental slopes, the Reykjanes Ridge, and in a region delimited by the Azores–Biscay Rise and Eriador Seamount. There, the vertical energy flux of internal waves is preferentially oriented toward the surface and 〈ε2002–2012〉 is in the range 1–20 × 10−10 W kg−1. The interannual variability in the dissipation rates is remarkably small over the whole transect. A few strong dissipation rate events exceeding the uncertainty of the finescale parameterization occur at depth between the Azores–Biscay Rise and Eriador Seamount. This region is also marked by mesoscale eddying flows resulting in enhanced surface energy level and enhanced bottom velocities. Estimates of the vertical energy fluxes into the internal tide and into topographic internal waves suggest that the latter are responsible for the strong dissipation events. At Eriador Seamount, both topographic internal waves and the internal tide contribute with the same order of magnitude to the dissipation rate while around the Reykjanes Ridge the internal tide provides the bulk of the dissipation rate.

2012 ◽  
Vol 7 (1) ◽  
pp. 53-69
Author(s):  
Vladimir Dulin ◽  
Yuriy Kozorezov ◽  
Dmitriy Markovich

The present paper reports PIV (Particle Image Velocimetry) measurements of turbulent velocity fluctuations statistics in development region of an axisymmetric free jet (Re = 28 000). To minimize measurement uncertainty, adaptive calibration, image processing and data post-processing algorithms were utilized. On the basis of theoretical analysis and direct measurements, the paper discusses effect of PIV spatial resolution on measured statistical characteristics of turbulent fluctuations. Underestimation of the second-order moments of velocity derivatives and of the turbulent kinetic energy dissipation rate due to a finite size of PIV interrogation area and finite thickness of laser sheet was analyzed from model spectra of turbulent velocity fluctuations. The results are in a good agreement with the measured experimental data. The paper also describes performance of possible ways to account for unresolved small-scale velocity fluctuations in PIV measurements of the dissipation rate. In particular, a turbulent viscosity model can be efficiently used to account for the unresolved pulsations in a free turbulent flow


2015 ◽  
Vol 32 (2) ◽  
pp. 318-333 ◽  
Author(s):  
A. D. Greene ◽  
P. J. Hendricks ◽  
M. C. Gregg

AbstractTurbulent microstructure and acoustic Doppler current profiler (ADCP) data were collected near Tacoma Narrows in Puget Sound, Washington. Over 100 coincident microstructure profiles have been compared to ADCP estimates of turbulent kinetic energy dissipation rate (ϵ). ADCP dissipation rates were calculated using the large-eddy method with theoretically determined corrections for sensor noise on rms velocity and integral-scale calculations. This work is an extension of Ann Gargett’s approach, which used a narrowband ADCP in regions with intense turbulence and strong vertical velocities. Here, a broadband ADCP is used to measure weaker turbulence and achieve greater horizontal and vertical resolution relative to the narrowband ADCP. Estimates of ϵ from the Modular Microstructure Profiler (MMP) and broadband ADCP show good quantitative agreement over nearly three decades of dissipation rate, 3 × 10−8–10−5 m2 s−3. This technique is most readily applied when the turbulent velocity is greater than the ADCP velocity uncertainty (σ) and the ADCP cell size is within a factor of 2 of the Thorpe scale. The 600-kHz broadband ADCP used in this experiment yielded a noise floor of 3 mm s−1 for 3-m vertical bins and 2-m along-track average (≈four pings), which resulted in turbulence levels measureable with the ADCP as weak as 3 × 10−8 m2 s−3. The value and trade-off of changing the ADCP cell size, which reduces noise but also changes the ratio of the Thorpe scale to the cell size, are discussed as well.


Sign in / Sign up

Export Citation Format

Share Document