scholarly journals Mesoscale and Submesoscale Effects on Mixed Layer Depth in the Southern Ocean

2017 ◽  
Vol 47 (9) ◽  
pp. 2173-2188 ◽  
Author(s):  
S. D. Bachman ◽  
J. R. Taylor ◽  
K. A. Adams ◽  
P. J. Hosegood

AbstractSubmesoscale dynamics play a key role in setting the stratification of the ocean surface mixed layer and mediating air–sea exchange, making them especially relevant to anthropogenic carbon uptake and primary productivity in the Southern Ocean. In this paper, a series of offline-nested numerical simulations is used to study submesoscale flow in the Drake Passage and Scotia Sea regions of the Southern Ocean. These simulations are initialized from an ocean state estimate for late April 2015, with the intent to simulate features observed during the Surface Mixed Layer at Submesoscales (SMILES) research cruise, which occurred at that time and location. The nested models are downscaled from the original state estimate resolution of 1/12° and grid spacing of about 8 km, culminating in a submesoscale-resolving model with a resolution of 1/192° and grid spacing of about 500 m. The submesoscale eddy field is found to be highly spatially variable, with pronounced hot spots of submesoscale activity. These areas of high submesoscale activity correspond to a significant difference in the 30-day average mixed layer depth between the 1/12° and 1/192° simulations. Regions of large vertical velocities in the mixed layer correspond with high mesoscale strain rather than large . It is found that is well correlated with the mesoscale density gradient but weakly correlated with both the mesoscale kinetic energy and strain. This has implications for the development of submesoscale eddy parameterizations that are sensitive to the character of the large-scale flow.

2009 ◽  
Vol 39 (3) ◽  
pp. 780-797 ◽  
Author(s):  
T. M. Shaun Johnston ◽  
Daniel L. Rudnick

Abstract The transition layer is the poorly understood interface between the stratified, weakly turbulent interior and the strongly turbulent surface mixed layer. The transition layer displays elevated thermohaline variance compared to the interior and maxima in current shear, vertical stratification, and potential vorticity. A database of 91 916 km or 25 426 vertical profiles of temperature and salinity from SeaSoar, a towed vehicle, is used to define the transition layer thickness. Acoustic Doppler current measurements are also used, when available. Statistics of the transition layer thickness are compared for 232 straight SeaSoar sections, which range in length from 65 to 1129 km with typical horizontal resolution of ∼4 km and vertical resolution of 8 m. Transition layer thicknesses are calculated in three groups from 1) vertical displacements of the mixed layer base and of interior isopycnals into the mixed layer; 2) the depths below the mixed layer depth of peaks in shear, stratification, and potential vorticity and their widths; and 3) the depths below or above the mixed layer depth of extrema in thermohaline variance, density ratio, and isopycnal slope. From each SeaSoar section, the authors compile either a single value or a median value for each of the above measures. Each definition yields a median transition layer thickness from 8 to 24 m below the mixed layer depth. The only exception is the median depth of the maximum isopycnal slope, which is 37 m above the mixed layer base, but its mode is 15–25 m above the mixed layer base. Although the depths of the stratification, shear, and potential vorticity peaks below the mixed layer are not correlated with the mixed layer depth, the widths of the shear and potential vorticity peaks are. Transition layer thicknesses from displacements and the full width at half maximum of the shear and potential vorticity peak give transition layer thicknesses from 0.11× to 0.22× the mean depth of the mixed layer. From individual profiles, the depth of the shear peak below the stratification peak has a median value of 6 m, which shows that momentum fluxes penetrate farther than buoyancy fluxes. A typical horizontal scale of 5–10 km for the transition layer comes from the product of the isopycnal slope and a transition layer thickness suggesting the importance of submesoscale processes in forming the transition layer. Two possible parameterizations for transition layer thickness are 1) a constant of 11–24 m below the mixed layer depth as found for the shear, stratification, potential vorticity, and thermohaline variance maxima and the density ratio extrema; and 2) a linear function of mixed layer depth as found for isopycnal displacements and the widths of the shear and potential vorticity peaks.


1986 ◽  
Vol 37 (4) ◽  
pp. 421 ◽  
Author(s):  
LJ Hamilton

A statistical analysis has been made of 26 years of bathythermograph (BT) data to 1980 for the south-west Australian area bounded by 30-35�s. and 110-115�E., a region influenced by the Leeuwin Current. The data indicate that a surface mixed layer exists all year round, with average depth 55 m and standard deviation 37 m. All but 2% of BT casts show a mixed-layer depth (MLD) less than 150 m. MLD are deepest in mid-year, particularly from July to September. Sea surface temperatures (SST) are significantly related to temperature values down to 200 m depth, especially in mid-year, for both eastern and western parts of the area separated by 113�E. Correlations of MLD with SST are significant only in the western part, and then only from January to March, and April to June. Long-term horizontally averaged temperature fields are broadly related through the water column from the surface to 200 m. All results indicate that, especially in mid-year, SST fields are related to subsurface temperature fields, which may be representative of flow structure. Seasonal differences exist between the eastern and western areas, caused by the Leeuwin Current.


2015 ◽  
Vol 45 (1) ◽  
pp. 247-258 ◽  
Author(s):  
Yutaka Yoshikawa

AbstractThis study concerns the combined effects of Earth’s rotation and stabilizing surface buoyancy flux upon the wind-induced turbulent mixing in the surface layer. Two different length scales, the Garwood scale and Zilitinkevich scale, have been proposed for the stabilized mixing layer depth under Earth’s rotation. Here, this study analyzes observed mixed layer depth plus surface momentum and buoyancy fluxes obtained from Argo floats and satellites, finding that the Zilitinkevich scale is more suited for observed mixed layer depths than the Garwood scale. Large-eddy simulations (LESs) reproduce this observed feature, except under a weak stabilizing flux where the mixed layer depth could not be identified with the buoyancy threshold method (because of insufficient buoyancy difference across the mixed layer base). LESs, however, show that the mixed layer depth if defined with buoyancy ratio relative to its surface value follows the Zilitinkevich scale even under such a weak stabilizing flux. LESs also show that the mixing layer depth is in good agreement with the Zilitinkevich scale. These findings will contribute to better understanding of the response of stabilized mixing/mixed layer depth to surface forcings and hence better estimation/prediction of several processes related to stabilized mixing/mixed layer depth such as air–sea interaction, subduction of surface mixed layer water, and spring blooming of phytoplankton biomass.


2021 ◽  
Author(s):  
Reint Fischer ◽  
Delphine Lobelle ◽  
Merel Kooi ◽  
Albert Koelmans ◽  
Victor Onink ◽  
...  

Abstract. The fate of (micro)plastic particles in the open ocean is controlled by physical and biological processes. Here, we model the effects of biofouling on the subsurface vertical distribution of spherical, virtual plastic particles with radii of 0.01–1 mm. For the physics, four vertical velocity terms are included: advection, wind-driven mixing, tidally induced mixing, and the sinking velocity of the biofouled particle. For the biology, we simulate the attachment, growth and loss of algae on particles. We track 10,000 particles for one year in three different regions with distinct biological and physical properties: the low productivity region of the North Pacific Subtropical Gyre, the high productivity region of the Equatorial Pacific and the high mixing region of the Southern Ocean. The growth of biofilm mass in the euphotic zone and loss of mass below the euphotic zone result in the oscillatory behaviour of particles, where the larger (0.1–1.0 mm) particles have much shorter average oscillation lengths (< 10 days; 90th percentile) than the smaller (0.01–0.1 mm) particles (up to 130 days; 90th percentile). A subsurface maximum concentration occurs just below the mixed layer depth (around 30 m) in the Equatorial Pacific, which is most pronounced for larger particles (0.1–1.0 mm). This occurs since particles become neutrally buoyant when the processes affecting the settling velocity of the particle and the motion of the ocean are in equilibrium. Seasonal effects in the subtropical gyre result in particles sinking below the mixed layer depth only during spring blooms, but otherwise remaining within the mixed layer. The strong winds and deepest average mixed layer depth in the Southern Ocean (400 m) result in the deepest redistribution of particles (> 5000 m). Our results show that the vertical movement of particles is mainly affected by physical (wind-induced mixing) processes within the mixed layer and biological (biofilm) dynamics below the mixed layer. Furthermore, positively buoyant particles with radii of 0.01–1.0 mm can sink far below the euphotic zone and mixed layer in regions with high near-surface mixing or high biological activity. This work can easily be coupled to other models to simulate open-ocean biofouling dynamics, in order to reach a better understanding of where ocean (micro)plastic ends up.


2016 ◽  
Vol 13 (2) ◽  
pp. 364 ◽  
Author(s):  
Tereza Jarníková ◽  
Philippe D. Tortell

Environmental context The trace gas dimethylsulfide (DMS) is emitted from surface ocean waters to the overlying atmosphere, where it forms aerosols that promote cloud formation and influence Earth’s climate. We present an updated climatology of DMS emissions from the vast Southern Ocean, demonstrating how the inclusion of new data yields higher regional sources compared with previously derived values. Our work provides an important step towards better quantifying the oceanic emissions of an important climate-active gas. Abstract The Southern Ocean is a dominant source of the climate-active gas dimethylsulfide (DMS) to the atmosphere. Despite significant improvements in data coverage over the past decade, the most recent global DMS climatology does not include a growing number of high-resolution surface measurements in Southern Ocean waters. Here, we incorporate these high resolution data (~700000 measurements) into an updated Southern Ocean climatology of summertime DMS concentrations and sea–air fluxes. Owing to sparse monthly data coverage, we derive a single summertime climatology based on December through February means. DMS frequency distributions and oceanographic properties (mixed-layer depth and chlorophyll-a) show good general coherence across these months, providing justification for the use of summertime mean values. The revised climatology shows notable differences with the existing global climatology. In particular, we find increased DMS concentrations and sea–air fluxes south of the Polar Frontal zone (between ~60 and 70°S), and increased sea–air fluxes in mid-latitude waters (40–50°S). These changes are attributable to both the inclusion of new data and the use of region-specific parameters (e.g. data cut-off thresholds and interpolation radius) in our objective analysis. DMS concentrations in the Southern Ocean exhibit weak though statistically significant correlations with several oceanographic variables, including ice cover, mixed-layer depth and chlorophyll-a, but no apparent relationship with satellite-derived measures of phytoplankton photophysiology or taxonomic group abundance. Our analysis highlights the importance of using regional parameters in constructing climatological DMS fields, and identifies regions where additional observations are most needed.


Sign in / Sign up

Export Citation Format

Share Document