scholarly journals Geographical Distribution of Diurnal and Semidiurnal Parametric Subharmonic Instability in a Global Ocean Circulation Model

2018 ◽  
Vol 48 (6) ◽  
pp. 1409-1431 ◽  
Author(s):  
Joseph K. Ansong ◽  
Brian K. Arbic ◽  
Harper L. Simmons ◽  
Matthew H. Alford ◽  
Maarten C. Buijsman ◽  
...  

AbstractThe evidence for, baroclinic energetics of, and geographic distribution of parametric subharmonic instability (PSI) arising from both diurnal and semidiurnal tides in a global ocean general circulation model is investigated using 1/12.5° and 1/25° simulations that are forced by both atmospheric analysis fields and the astronomical tidal potential. The paper examines whether PSI occurs in the model, and whether it accounts for a significant fraction of the tidal baroclinic energy loss. Using energy transfer calculations and bispectral analyses, evidence is found for PSI around the critical latitudes of the tides. The intensity of both diurnal and semidiurnal PSI in the simulations is greatest in the upper ocean, consistent with previous results from idealized simulations, and quickly drops off about 5° from the critical latitudes. The sign of energy transfer depends on location; the transfer is positive (from the tides to subharmonic waves) in some locations and negative in others. The net globally integrated energy transfer is positive in all simulations and is 0.5%–10% of the amount of energy required to close the baroclinic energy budget in the model. The net amount of energy transfer is about an order of magnitude larger in the 1/25° semidiurnal simulation than the 1/12.5° one, implying the dependence of the rate of energy transfer on model resolution.

2006 ◽  
Vol 56 (5-6) ◽  
pp. 543-567 ◽  
Author(s):  
Barnier Bernard ◽  
Gurvan Madec ◽  
Thierry Penduff ◽  
Jean-Marc Molines ◽  
Anne-Marie Treguier ◽  
...  

1997 ◽  
Vol 25 ◽  
pp. 116-120 ◽  
Author(s):  
S. Legutke ◽  
E. Maier-Reimkr ◽  
A. Stössel ◽  
A. Hellbach

A global ocean general circulation model has been coupled with a dynamic thermodynamic sea-ice model. This model has been spun-up in a 1000 year integration using daily atmosphere model data. Main water masses and currents are reproduced as well as the seasonal characteristics of the ice cover of the Northern and Southern Hemispheres. Model results for the Southern Ocean, however, show the ice cover as too thin, and there are large permanent polynyas in the Weddell and Ross Seas. These polynyas are due to a large upward oceanic heat flux caused by haline rejection during the freezing of sea ice. Sensitivity studies were performed to test several ways of treating the sea-surface salinity and the rejected brine. The impact on the ice cover, water-mass characteristics, and ocean circulation are described.


2012 ◽  
Vol 117 (C10) ◽  
pp. n/a-n/a ◽  
Author(s):  
J. F. Shriver ◽  
B. K. Arbic ◽  
J. G. Richman ◽  
R. D. Ray ◽  
E. J. Metzger ◽  
...  

2005 ◽  
Vol 35 (6) ◽  
pp. 933-948 ◽  
Author(s):  
Henk A. Dijkstra ◽  
Wilbert Weijer

Abstract A study of the stability of the global ocean circulation is performed within a coarse-resolution general circulation model. Using techniques of numerical bifurcation theory, steady states of the global ocean circulation are explicitly calculated as parameters are varied. Under a freshwater flux forcing that is diagnosed from a reference circulation with Levitus surface salinity fields, the global ocean circulation has no multiple equilibria. It is shown how this unique-state regime transforms into a regime with multiple equilibria as the pattern of the freshwater flux is changed in the northern North Atlantic Ocean. In the multiple-equilibria regime, there are two branches of stable steady solutions: one with a strong northern overturning in the Atlantic and one with hardly any northern overturning. Along the unstable branch that connects both stable solution branches (here for the first time computed for a global ocean model), the strength of the southern sinking in the South Atlantic changes substantially. The existence of the multiple-equilibria regime critically depends on the spatial pattern of the freshwater flux field and explains the hysteresis behavior as found in many previous modeling studies.


2021 ◽  
Author(s):  
Martin Butzin ◽  
Dmitry Sidorenko ◽  
Peter Köhler

<p>We have implemented <sup>14</sup>C and further abiotic tracers (<sup>39</sup>Ar, CFC-12, and SF<sub>6</sub>) into the state-of-the-art ocean circulation model FESOM2. Different to other global ocean circulation models, FESOM2 employs unstructured meshes with variable horizontal resolution. This approach allows for improvements in areas which are commonly poorly resolved in global ocean modelling studies such as upwelling regions, while keeping the overall computational costs still sufficiently moderate. Here, we present results of a transient simulation running from 1850-2015 CE tracing the evolution of the bomb radiocarbon pulse with a focus on the evolution of marine radiocarbon ages. In addition we explore the potential of <sup>39</sup>Argon to complement <sup>14</sup>C dating of marine waters.</p>


Sign in / Sign up

Export Citation Format

Share Document