scholarly journals Influence of the Atmospheric Surface Layer on a Turbulent Flow Downstream of a Ship Superstructure

2013 ◽  
Vol 30 (8) ◽  
pp. 1803-1819 ◽  
Author(s):  
Luksa Luznik ◽  
Cody J. Brownell ◽  
Murray R. Snyder ◽  
Hyung Suk Kang

Abstract This paper describes a set of turbulence measurements at sea in the area of high flow distortion in the near-wake and recirculation zone behind a ship's superstructure that is similar in geometry to a helicopter hangar/flight deck arrangement found on many modern U.S. Navy ships. The instrumented ship is a 32-m-long training vessel operated by the United States Naval Academy that has been modified by adding a representative flight deck and hangar structure. The flight deck is instrumented with up to seven sonic anemometers/thermometers that are used to obtain simultaneous velocity measurements at various spatial locations on the flight deck, and one sonic anemometer at bow mast is used to characterize inflow atmospheric boundary conditions. Data characterizing wind over the deck at an incoming angle of 0° (head winds) and wind speeds from 2 to 10 m s−1 obtained in the Chesapeake Bay are presented and discussed. Turbulent statistics of inflow conditions are analyzed using the Kaimal universal turbulence spectral model for the atmospheric surface layer and show that for the present dataset this approach eliminates the need to account for platform motion in computing variances and covariances. Conditional sampling of mean flow and turbulence statistics at the flight deck indicate no statistically significant variations between unstable, stable, and neutral atmospheric inflow conditions, and the results agree with the published data for flows over the backward-facing step geometries.

2010 ◽  
Vol 7 (5) ◽  
pp. 1745-1757 ◽  
Author(s):  
E. Dellwik ◽  
J. Mann ◽  
K. S. Larsen

Abstract. An analysis of flow tilt angles from a fetch-limited beech forest site with clearings is presented in the context of vertical advection of carbon dioxide. Flow angles and vertical velocities from two sonic anemometers by different manufacturers were analyzed. Instead of using rotations, where zero-flow angles were assumed for neutral flow, the data was interpreted in relation to upstream and downstream forest edges. Uncertainties caused by flow distortion, vertical misalignment and limited sampling time (statistical uncertainty) were evaluated and found to be highly significant. Since the attack angle distribution of the wind on the sonic anemometer is a function of atmospheric stratification, an instrumental error caused by imperfect flow distortion correction is also a function of the atmospheric stratification. In addition, it is discussed that the sonic anemometers have temperature dependent off-sets. These features of the investigated sonic anemometers make them unsuitable for measuring vertical velocities over highly turbulent forested terrain. By comparing the sonic anemometer results to that of a conically scanning Doppler lidar (Dellwik et al., 2010b), sonic anemometer accuracy for measuring mean flow tilt angles was estimated to between 2° and 3°. Use of planar fit algorithms, where the mean vertical velocity is calculated as the difference between the neutral and non-neutral flow, does not solve this problem of low accuracy and is not recommended. Because of the large uncertainties caused by flow distortion and vertical alignment, it was only possible to a limited extent to relate sonic anemometer flow tilt angles to upwind forest edges, but the results by the lidar indicated that an internal boundary layer affect flow tilt angles at 21m above the forest. This is in accordance with earlier studies at the site. Since the mean flow tilt angles do not follow the terrain, an estimate of the vertical advection term for near-neutral conditions was calculated using profile measurements of carbon dioxide. The estimated advection term is large, but it is not recommended to include it in the surface carbon balance, unless all terms in the carbon dioxide conservation equation can be precisely estimated.


2009 ◽  
Vol 6 (4) ◽  
pp. 8167-8213 ◽  
Author(s):  
E. Dellwik ◽  
J. Mann ◽  
F. Bingöl ◽  
K. S. Larsen

Abstract. An analysis of flow angles from a fetch-limited beech forest site with clearings is presented. Flow angles and vertical velocities from two types of sonic anemometers as well as a ground based remote sensing lidar were analysed. Instead of using rotations, where zero-flow angles were assumed for neutral flow, the data from the instruments were interpreted in relation to the terrain. Uncertainties regarding flow distortion and limited sampling time (statistical uncertainty) were evaluated and found to be significant. Especially for one of the sonic anemometers, relatively small changes in the flow distortion correction could change the sign of mean vertical velocities taken during stable atmospheric stratification relative to the neutral flow. Despite the uncertainties, it was possible to some extent to relate both positive and negative mean flow angles to features in the terrain. Conical and linear scans with a remote sensing lidar were evaluated for estimation of vertical velocities and flow angles. The results of the vertical conical scans were promising, and yielded negative flow angles for a sector where the forest is fetch-limited. However, more data and analysis is needed for a complete evaluation of the technique. The horizontal linear scans showed the variability of the mean wind speed field. A vertical velocity was calculated from different focusing distances, but this estimate yielded unrealistically high vertical velocities, due to neglect of the transversal wind component. The vertical advection term was calculated using the measured mean flow angles at the mast and profile measurements of carbon dioxide, but it is not recommended to use in relation with the flux measurement as the vertical velocity measured at the mast is most likely not representative for the whole forest.


Abstract Intermittent transitions between turbulent and non-turbulent states are ubiquitous in the stable atmospheric surface layer (ASL). Data from two field experiments in Utqiagvik, Alaska, and from direct numerical simulations are used to probe these state transitions so as to (i) identify statistical metrics for the detection of intermittency, (ii) probe the physical origin of turbulent bursts, and (iii) quantify intermittency effects on overall fluxes and their representation in closure models. The analyses reveal three turbulence regimes, two of which correspond to weakly turbulent periods accompanied by intermittent behavior (regime 1: intermittent, regime 2: transitional), while the third is associated with a fully turbulent flow. Based on time series of the turbulence kinetic energy (TKE), two non-dimensional parameters are proposed to diagnostically categorize the ASL state into these regimes; the first characterizes the weakest turbulence state, while the second describes the range of turbulence variability. The origins of intermittent turbulence activity are then investigated based on the TKE budget over the identified bursts. While the quantitative results depend on the height, the analyses indicate that these bursts are predominantly advected by the mean flow, produced locally by mechanical shear, or lofted from lower levels by turbulent ejections. Finally, a new flux model is proposed using the vertical velocity variance in combination with different mixing length scales. The model provides improved representation (correlation coefficients with observations of 0.61 for momentum and 0.94 for sensible heat) compared to Monin–Obukhov similarity (correlation coefficients of 0.0047 for momentum and 0.49 for sensible heat), thus opening new pathways for improved parametrizations in coarse atmospheric models.


2007 ◽  
Vol 64 (1) ◽  
pp. 137-156 ◽  
Author(s):  
Philippe Drobinski ◽  
Pierre Carlotti ◽  
Jean-Luc Redelsperger ◽  
Valery Masson ◽  
Robert M. Banta ◽  
...  

Abstract This study combines the experimental measurements with large-eddy simulation (LES) data of a neutral planetary boundary layer (PBL) documented by a 60-m tower instrumented with eight sonic anemometers, and a high-resolution Doppler lidar during the 1999 Cooperative Atmospheric and Surface Exchange Study (CASES-99) experiment. The target of the paper is (i) to investigate the multiscale nature of the turbulent eddies in the surface layer (SL), (ii) to explain the existence of a −1 power law in the velocity fluctuation spectra, and (iii) to investigate the different nature of turbulence in the two sublayers within the SL, which are the eddy surface layer (ESL; lower sublayer of the SL lying between the surface and about 20-m height) and the shear surface layer (SSL; lying between the ESL top and the SL top). The sonic anemometers and Doppler lidar prove to be proper instruments for LES validation, and in particular, the Doppler lidar because of its ability to map near-surface eddies. This study shows the different nature of turbulence in the ESL and the SSL in terms of organized eddies, velocity fluctuation spectra, and second-order moment statistics. If quantitative agreement is found in the SSL between the LES and the measurements, only qualitative similarity is found in the ESL due to the subgrid-scale model, indicating that the LES captures part of the physics of the ESL. The LES helps explain the origin of the −1 power-law spectral subrange evidence in the velocity fluctuation spectra computed in the SL using the CASES-99 dataset: strong interaction between the mean flow and the fluctuating vorticities is found in the SL, and turbulent production is found to be larger than turbulent energy transfer for k1z > 1 (k1 being the longitudinal wavenumber and z the height), which is the condition of the −1 power-law existence.


2021 ◽  
Vol 6 (7) ◽  
Author(s):  
Mohammad Allouche ◽  
Gabriel G. Katul ◽  
Jose D. Fuentes ◽  
Elie Bou-Zeid

2006 ◽  
Vol 53 (3) ◽  
pp. 251-263 ◽  
Author(s):  
Leif Kristensen ◽  
Peter Kirkegaard

Sign in / Sign up

Export Citation Format

Share Document