Characterizing Channel Center Frequencies in AMSU-A and MSU Microwave Sounding Instruments

2014 ◽  
Vol 31 (8) ◽  
pp. 1713-1732 ◽  
Author(s):  
Qifeng Lu ◽  
William Bell

Abstract Passive microwave observations from the Microwave Sounding Unit (MSU) and the Advanced Microwave Sounding Unit-A (AMSU-A) have been exploited widely for numerical weather prediction (NWP), atmospheric reanalyses, and climate monitoring studies. The treatment of biases in these observations, with respect to models as well as between satellites, has been the focus of much effort in recent years. This study presents evidence that shifts, drifts, and uncertainties in pass band center frequencies are a significant contribution to these biases. Center frequencies for AMSU-A channels 6–14 and MSU channel 3 have been analyzed using NWP fields and radiative transfer models, for a series of operational satellites covering the period 1979–2012. AMSU-A channels 6 (54.40 GHz), 7 (54.94 GHz), and 8 (55.50 GHz) on several satellites exhibit significant shifts and drifts relative to nominal pass band center frequencies. No significant shifts were found for AMSU-A channels 9–14, most probably as a consequence of the active frequency locking of these channels. For MSU channel 3 (54.96 GHz) most satellites exhibit large shifts, the largest for the earliest satellites. For example, for the first MSU on the Television and Infrared Observation Satellite-N (TIROS-N), the analyzed shift is 68 MHz over the lifetime of the satellite. Taking these shifts into account in the radiative transfer modeling significantly improves the fit between model and observations, eliminates the strong seasonal cycle in the model–observation misfit, and significantly improves the bias between NWP models and observations. The study suggests that, for several channels studied, the dominant component of the model–observation bias results from these spectral errors, rather than radiometric bias due to calibration errors.

2008 ◽  
Vol 25 (6) ◽  
pp. 1048-1054 ◽  
Author(s):  
Robert A. Iacovazzi ◽  
Changyong Cao

Abstract In this study, a technique has been developed to improve collocation of two passive-microwave satellite instrument datasets at a simultaneous nadir overpass (SNO). The technique has been designed for the purpose of reducing uncertainties related to SNO-inferred intersatellite brightness temperature (Tb) biases, and it involves replacing the current “nearest-neighbor pixel matching” collocation technique with quality-controlled bilinear interpolation. Since the largest Tb bias estimation uncertainties of the SNO method are associated with highly variable earth scenes and window channels of microwave radiometers that have relatively large (∼50 km) separation between measurements, the authors have used Advanced Microwave Sounding Unit A (AMSU-A) data to develop the technique. It is found that using the new data collocation technique reduces SNO ensemble mean Tb bias confidence intervals in the SNO method, as applied to surface-sensitive channels of AMSU-A, by nearly 70% on average. This improvement in the SNO method enhances its ability to quantify intersatellite Tb biases at microwave radiometer channels that are sensitive to surface radiation, which is necessary to advance the sciences of numerical weather prediction and climate change detection.


2011 ◽  
Vol 28 (11) ◽  
pp. 1373-1389 ◽  
Author(s):  
Qifeng Lu ◽  
William Bell ◽  
Peter Bauer ◽  
Niels Bormann ◽  
Carole Peubey

Abstract China’s Feng-Yun-3A (FY-3A), launched in May 2008, is the first in a series of seven polar-orbiting meteorological satellites planned for the next decade by China. The FY-3 series is set to become an important data source for numerical weather prediction (NWP), reanalysis, and climate science. FY-3A is equipped with a microwave temperature sounding instrument (MWTS). This study reports an assessment of the MWTS instrument using the ECMWF NWP model, radiative transfer modeling, and comparisons with equivalent observations from the Advanced Microwave Sounding Unit-A (AMSU-A). The study suggests the MWTS instrument is affected by biases related to large shifts, or errors, in the frequency of the channel passbands as well as radiometer nonlinearity. The passband shifts, relative to prelaunch measurements, are 55, 39, and 33 MHz for channels 2–4, respectively. Relative to the design specification the shifts are 60, 80, and 83 MHz, with uncertainties of ±2.5 MHz. The radiometer nonlinearity results in a positive bias in measured brightness temperatures and is manifested as a quadratic function of measured scene temperatures. By correcting for both of these effects the quality of the MWTS data is improved significantly, with the standard deviations of the (observed minus simulated) differences based on short-range forecast fields reduced by 30%–50% relative to simulations using prelaunch measurements of the passband, to values close to those observed for AMSU-A-equivalent channels. The new methodology could be applied to other microwave temperature sounding instruments and illustrates the value of NWP fields for the on-orbit characterization of satellite sensors.


2018 ◽  
Vol 11 (4) ◽  
pp. 1537-1556 ◽  
Author(s):  
Stefan A. Buehler ◽  
Jana Mendrok ◽  
Patrick Eriksson ◽  
Agnès Perrin ◽  
Richard Larsson ◽  
...  

Abstract. This article describes the latest stable release (version 2.2) of the Atmospheric Radiative Transfer Simulator (ARTS), a public domain software for radiative transfer simulations in the thermal spectral range (microwave to infrared). The main feature of this release is a planetary toolbox that allows simulations for the planets Venus, Mars, and Jupiter, in addition to Earth. This required considerable model adaptations, most notably in the area of gaseous absorption calculations. Other new features are also described, notably radio link budgets (including the effect of Faraday rotation that changes the polarization state) and the treatment of Zeeman splitting for oxygen spectral lines. The latter is relevant, for example, for the various operational microwave satellite temperature sensors of the Advanced Microwave Sounding Unit (AMSU) family.


2007 ◽  
Vol 88 (7) ◽  
pp. 1085-1096 ◽  
Author(s):  
K. Dieter Klaes ◽  
Marc Cohen ◽  
Yves Buhler ◽  
Peter Schlüssel ◽  
Rosemary Munro ◽  
...  

The European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Polar System is the European contribution to the European–U.S. operational polar meteorological satellite system (Initial Joint Polar System). It serves the midmorning (a.m.) orbit 0930 Local Solar Time (LST) descending node. The EUMETSAT satellites of this new polar system are the Meteorological Operational Satellite (Metop) satellites, jointly developed with ESA. Three Metop satellites are foreseen for at least 14 years of operation from 2006 onward and will support operational meteorology and climate monitoring. The Metop Programme includes the development of some instruments, such as the Global Ozone Monitoring Experiment, Advanced Scatterometer, and the Global Navigation Satellite System (GNSS) Receiver for Atmospheric Sounding, which are advanced instruments of recent successful research missions. Core components of the Metop payload, common with the payload on the U.S. satellites, are the Advanced Very High Resolution Radiometer and the Advanced Television Infrared Observation Satellite (TIROS) Operational Vertical Sounder (ATOVS) package, composed of the High Resolution Infrared Radiation Sounder (HIRS), Advanced Microwave Sounding Unit A (AMSU-A), and Microwave Humidity Sounder (MHS). They provide continuity to the NOAA-K, -L, -M satellite series (in orbit known as NOAA-15, -16 and -17). MHS is a EUMETSAT development and replaces the AMSU-B instrument in the ATOVS suite. The Infrared Atmospheric Sounding Interferometer (IASI) instrument, developed by the Centre National d'Etudes Spatiales, provides hyperspectral resolution infrared sounding capabilities and represents new technology in operational satellite remote sensing.


2020 ◽  
Vol 12 (18) ◽  
pp. 2978
Author(s):  
Banghua Yan ◽  
Junye Chen ◽  
Cheng-Zhi Zou ◽  
Khalil Ahmad ◽  
Haifeng Qian ◽  
...  

This study carries out the calibration and validation of Antenna Temperature Data Record (TDR) and Brightness Temperature Sensor Data Record (SDR) data from the last National Oceanic and Atmospheric Administration (NOAA) Advanced Microwave Sounding Unit-A (AMSU-A) flown on the Meteorological Operational satellite programme (MetOp)-C satellite. The calibration comprises the selection of optimal space view positions for the instrument and the determination of coefficients in calibration equations from the Raw Data Record (RDR) to TDR and SDR. The validation covers the analyses of the instrument noise equivalent differential temperature (NEDT) performance and the TDR and SDR data quality from the launch until 15 November 2019. In particular, the Metop-C data quality is assessed by comparing to radiative transfer model simulations and observations from Metop-A/B AMSU-A, respectively. The results demonstrate that the on-orbit instrument NEDTs have been stable since launch and continue to meet the specifications at most channels except for channel 3, whose NEDT exceeds the specification after April 2019. The quality of the Metop-C AMSU-A data for all channels except channel 3 have been reliable since launch. The quality at channel 3 is degraded due to the noise exceeding the specification. Compared to its TDR data, the Metop-C AMSU-A SDR data exhibit a reduced and more symmetric scan angle-dependent bias against radiative transfer model simulations, demonstrating the great performance of the TDR to SDR conversion coefficients. Additionally, the Metop-C AMSU-A data quality agrees well with Metop-A/B AMSU-A data, with an averaged difference in the order of 0.3 K, which is confirmed based on Simultaneous Nadir Overpass (SNO) inter-sensor comparisons between Metop-A/B/C AMSU-A instruments via either NOAA-18 or NOAA-19 AMSU-A as a transfer.


2010 ◽  
Vol 27 (3) ◽  
pp. 443-456 ◽  
Author(s):  
William Bell ◽  
Sabatino Di Michele ◽  
Peter Bauer ◽  
Tony McNally ◽  
Stephen J. English ◽  
...  

Abstract The sensitivity of NWP forecast accuracy with respect to the radiometric performance of microwave sounders is assessed through a series of observing system experiments at the Met Office and ECMWF. The observing system experiments compare the impact of normal data from a single Advanced Microwave Sounding Unit (AMSU) with that from an AMSU where synthetic noise has been added. The results show a measurable reduction in forecast improvement in the Southern Hemisphere, with improvements reduced by 11% for relatively small increases in radiometric noise [noise-equivalent brightness temperature (NEΔT) increased from 0.1 to 0.2 K for remapped data]. The impact of microwave sounding data is shown to be significantly less than was the case prior to the use of advanced infrared sounder data [Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI)], with microwave sounding data now reducing Southern Hemisphere forecast errors by approximately 10% compared to 40% in the pre-AIRS/IASI period.


Sign in / Sign up

Export Citation Format

Share Document