scholarly journals Physical Evaluation of GPM DPR Single- and Dual-Wavelength Algorithms

2019 ◽  
Vol 36 (5) ◽  
pp. 883-902 ◽  
Author(s):  
Liang Liao ◽  
Robert Meneghini

AbstractA physical evaluation of the rain profiling retrieval algorithms for the Dual-Frequency Precipitation Radar (DPR) on board the Global Precipitation Measurement (GPM) Core Observatory satellite is carried out by applying them to the hydrometeor profiles generated from measured raindrop size distributions (DSD). The DSD-simulated radar profiles are used as input to the algorithms, and their estimates of hydrometeors’ parameters are compared with the same quantities derived directly from the DSD data (or truth). The retrieval accuracy is assessed by the degree to which the estimates agree with the truth. To check the validity and robustness of the retrievals, the profiles are constructed for cases ranging from fully correlated (or uniform) to totally uncorrelated DSDs along the columns. Investigation into the sensitivity of the retrieval results to the model assumptions is made to characterize retrieval uncertainties and identify error sources. Comparisons between the single- and dual-wavelength algorithm performance are carried out with either a single- or dual-wavelength constraint of the path integral or differential path integral attenuation. The results suggest that the DPR dual-wavelength algorithm generally provides accurate range-profiled estimates of rainfall rate and mass-weighted diameter with the dual-wavelength estimates superior in accuracy to those from the single-wavelength retrievals.

Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1260 ◽  
Author(s):  
Zuhang Wu ◽  
Yun Zhang ◽  
Lifeng Zhang ◽  
Xiaolong Hao ◽  
Hengchi Lei ◽  
...  

In this study, we evaluated the performance of rain-retrieval algorithms for the Version 6 Global Precipitation Measurement Dual-frequency Precipitation Radar (GPM DPR) products, against disdrometer observations and improved their retrieval algorithms by using a revised shape parameter µ derived from long-term Particle Size Velocity (Parsivel) disdrometer observations in Jianghuai region from 2014 to 2018. To obtain the optimized shape parameter, raindrop size distribution (DSD) characteristics of summer and winter seasons over Jianghuai region are analyzed, in terms of six rain rate classes and two rain categories (convective and stratiform). The results suggest that the GPM DPR may have better performance for winter rain than summer rain over Jianghuai region with biases of 40% (80%) in winter (summer). The retrieval errors of rain category-based µ (3–5%) were proved to be the smallest in comparison with rain rate-based µ (11–13%) or a constant µ (20–22%) in rain-retrieval algorithms, with a possible application to rainfall estimations over Jianghuai region. Empirical Dm–Ze and Nw–Dm relationships were also derived preliminarily to improve the GPM rainfall estimates over Jianghuai region.


2014 ◽  
Vol 53 (11) ◽  
pp. 2524-2537 ◽  
Author(s):  
Liang Liao ◽  
Robert Meneghini ◽  
Ali Tokay

AbstractA framework based on measured raindrop size distribution (DSD) data has been developed to assess uncertainties in DSD models employed in Ku- and Ka-band dual-wavelength radar retrievals. In this study, the rain rates and attenuation coefficients from DSD parameters derived by dual-wavelength algorithms are compared with those directly obtained from measured DSD spectra. The impact of the DSD gamma parameterizations on rain estimation from the Global Precipitation Measurement mission (GPM) Dual-Frequency Precipitation Radar (DPR) is examined for the cases of a fixed shape factor μ as well as for a constrained μ—that is, a μ–Λ relation (a relationship between the shape parameter and slope parameter Λ of the gamma DSD)—by using 11 Particle Size and Velocity (Parsivel) disdrometer measurements with a total number of about 50 000 one-minute spectra that were collected during the Iowa Flood Studies (IFloodS) experiment. It is found that the DPR-like dual-wavelength techniques provide fairly accurate estimates of rain rate and attenuation if a fixed-μ gamma DSD model is used, with the value of μ ranging from 3 to 6. Comparison of the results reveals that the retrieval errors from the μ–Λ relations are generally small, with biases of less than ±10%, and are comparable to the results from a fixed-μ gamma model with μ equal to 3 and 6. The DSD evaluation procedure is also applied to retrievals in which a lognormal DSD model is used.


2017 ◽  
Vol 18 (12) ◽  
pp. 3165-3179 ◽  
Author(s):  
Ali Tokay ◽  
Leo Pio D’Adderio ◽  
Federico Porcù ◽  
David B. Wolff ◽  
Walter A. Petersen

Abstract A network of seven two-dimensional video disdrometers (2DVD), which were operated during the Midlatitude Continental Convective Clouds Experiment (MC3E) in northern Oklahoma, are employed to investigate the spatial variability of raindrop size distribution (DSD) within the footprint of the dual-frequency precipitation radar (DPR) on board the National Aeronautics and Space Administration’s Global Precipitation Measurement (GPM) mission core satellite. One-minute 2DVD DSD observations were interpolated uniformly to 13 points distributed within a nearly circular DPR footprint through an inverse distance weighting method. The presence of deep continental showers was a unique feature of the dataset resulting in a higher mean rain rate R with respect to previous studies. As a measure of spatial variability for the interpolated data, a three-parameter exponential function was applied to paired correlations of three parameters of normalized gamma DSD, R, reflectivity, and attenuation at Ka- and Ku-band frequencies of DPR (Z_Ka, Z_Ku, k_Ka, and k_Ku, respectively). The symmetry of the interpolated sites allowed quantifying the directional differences in correlations at the same distance. The correlation distances d0 of R, k_Ka, and k_Ku were approximately 10 km and were not sensitive to the choice of four rain thresholds used in this study. The d0 of Z_Ku, on the other hand, ranged from 29 to 20 km between different rain thresholds. The coefficient of variation (CV) remained less than 0.5 for most of the samples for a given physical parameter, but a CV of greater than 1.0 was also observed in noticeable samples, especially for the shape parameter and Z_Ku.


2020 ◽  
Vol 59 (7) ◽  
pp. 1195-1215
Author(s):  
Ruiyao Chen ◽  
Ralf Bennartz

AbstractThe sensitivity of microwave brightness temperatures (TBs) to hydrometeors at frequencies between 89 and 190 GHz is investigated by comparing Fengyun-3C (FY-3C) Microwave Humidity Sounder-2 (MWHS-2) measurements with radar reflectivity profiles and retrieved products from the Global Precipitation Measurement mission’s Dual-Frequency Precipitation Radar (DPR). Scattering-induced TB depressions (ΔTBs), calculated by subtracting simulated cloud-free TBs from bias-corrected observed TBs for each channel, are compared with DPR-retrieved hydrometeor water path (HWP) and vertically integrated radar reflectivity ZINT. We also account for the number of hydrometeors actually visible in each MWHS-2 channel by weighting HWP with the channel’s cloud-free gas transmission profile and the observation slant path. We denote these transmission-weighted, slant-path-integrated quantities with a superscript asterisk (e.g., HWP*). The so-derived linear sensitivity of ΔTB with respect to HWP* increases with frequency roughly to the power of 1.78. A retrieved HWP* of 1 kg m−2 at 89 GHz on average corresponds to a decrease in observed TB, relative to a cloud-free background, of 11 K. At 183 GHz, the decrease is about 34–53 K. We perform a similar analysis using the vertically integrated, transmission-weighted slant-path radar reflectivity and find that ΔTB also decreases approximately linearly with . The exponent of 0.58 corresponds to the one we find in the purely DPR-retrieval-based ZINT–HWP relation. The observed sensitivities of ΔTB with respect to and HWP* allow for the validation of hydrometeor scattering models.


2019 ◽  
Vol 58 (7) ◽  
pp. 1429-1448 ◽  
Author(s):  
Gail Skofronick-Jackson ◽  
Mark Kulie ◽  
Lisa Milani ◽  
Stephen J. Munchak ◽  
Norman B. Wood ◽  
...  

AbstractRetrievals of falling snow from space-based observations represent key inputs for understanding and linking Earth’s atmospheric, hydrological, and energy cycles. This work quantifies and investigates causes of differences among the first stable falling snow retrieval products from the Global Precipitation Measurement (GPM) Core Observatory satellite and CloudSat’s Cloud Profiling Radar (CPR) falling snow product. An important part of this analysis details the challenges associated with comparing the various GPM and CloudSat snow estimates arising from different snow–rain classification methods, orbits, resolutions, sampling, instrument specifications, and algorithm assumptions. After equalizing snow–rain classification methodologies and limiting latitudinal extent, CPR observes nearly 10 (3) times the occurrence (accumulation) of falling snow as GPM’s Dual-Frequency Precipitation Radar (DPR). The occurrence disparity is substantially reduced if CloudSat pixels are averaged to simulate DPR radar pixels and CPR observations are truncated below the 8-dBZ reflectivity threshold. However, even though the truncated CPR- and DPR-based data have similar falling snow occurrences, average snowfall rate from the truncated CPR record remains significantly higher (43%) than the DPR, indicating that retrieval assumptions (microphysics and snow scattering properties) are quite different. Diagnostic reflectivity (Z)–snow rate (S) relationships were therefore developed at Ku and W band using the same snow scattering properties and particle size distributions in a final effort to minimize algorithm differences. CPR–DPR snowfall amount differences were reduced to ~16% after adopting this diagnostic Z–S approach.


Sign in / Sign up

Export Citation Format

Share Document