Ice-Draft Profiling from Bottom-Mounted ADCP Data

2005 ◽  
Vol 22 (8) ◽  
pp. 1249-1266 ◽  
Author(s):  
Andrey Y. Shcherbina ◽  
Daniel L. Rudnick ◽  
Lynne D. Talley

Abstract The feasibility of ice-draft profiling using an upward-looking bottom-mounted acoustic Doppler current profiler (ADCP) is demonstrated. Ice draft is determined as the difference between the instrument depth, derived from high-accuracy pressure data, and the distance to the lower ice surface, determined by the ADCP echo travel time. Algorithms for the surface range estimate from the water-track echo intensity profiles, data quality control, and correction procedures have been developed. Sources of error in using an ADCP as an ice profiler were investigated using the models of sound signal propagation and reflection. The effects of atmospheric pressure changes, sound speed variation, finite instrument beamwidth, hardware signal processing, instrument tilt, beam misalignment, and vertical sensor offset are quantified. The developed algorithms are tested using the data from the winter-long ADCP deployment on the northwestern shelf of the Okhotsk Sea.


2008 ◽  
Author(s):  
Annett B. Sullivan ◽  
Michael L. Deas ◽  
Jessica Asbill ◽  
Julie D. Kirshtein ◽  
Kenna D. Butler ◽  
...  


2013 ◽  
Vol 34 (10) ◽  
pp. 2482-2488
Author(s):  
Chen Li ◽  
Jian-bo Wu ◽  
Chao Gao ◽  
Dao-long Wang ◽  
Jun Li ◽  
...  




2012 ◽  
Vol 33 (7) ◽  
pp. 1730-1760 ◽  
Author(s):  
Rajmund Przybylak ◽  
Przemysław Wyszyński ◽  
Zsuzsanna Vízi ◽  
Joanna Jankowska


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mehdi Dastorani ◽  
Behnam Malekpour ◽  
Mohsen AminSobhani ◽  
Mohammadsadegh Alemrajabi ◽  
Arezoo Mahdian ◽  
...  

Abstract Background Bacterial microleakage is an important cause of apical periodontitis and endodontic treatment failure. This study aimed to assess the bacterial microleakage of nano-mineral trioxide aggregate (nano-MTA) as a sealer, Endoseal MTA, and GuttaFlow Bioseal sealers in atmospheric pressure, and simulated underwater diving and aviation conditions. Methods In this in vitro, experimental study, 180 extracted single-rooted teeth were cleaned and shaped, and were then randomly divided into three groups for single-cone obturation using Endoseal MTA, GuttaFlow Bioseal, or nano-MTA as a sealer. Each group was then randomly divided into three subgroups, and subjected to ambient atmospheric pressure, 2 atm pressure (to simulate underwater diving), and 0.5 atm pressure (to simulate aviation) using a custom-made pressure chamber. The teeth then underwent microbial leakage test using Streptococcus mutans (S. mutans), and the percentage of samples showing microleakage was recorded for up to 1 month, and analyzed using the Chi-square test. Results The three sealer groups were significantly different regarding bacterial microleakage (P < 0.05). The nano-MTA group showed significantly higher microleakage after 15 days than the other two groups (P = 0.006). The effect of pressure on bacterial microleakage was not significant in any sealer group (P > 0.05). Conclusion Within the limitations of this in vitro study, it may be concluded that single-cone obturation technique using nano-MTA as a sealer results in lower resistance to bacterial microleakage compared with the use of GuttaFlow Bioseal, and Endoseal MTA. Pressure changes in simulated underwater diving and aviation conditions had no significant effect on bacterial microleakage. Trial Registration Number This is not a human subject research.



Sign in / Sign up

Export Citation Format

Share Document