scholarly journals Trajectory-Tracking Scheme in Lagrangian Form for Solving Linear Advection Problems: Interface Spatial Discretization

2013 ◽  
Vol 141 (1) ◽  
pp. 324-339 ◽  
Author(s):  
Li Dong ◽  
Bin Wang

Abstract A previous Lagrangian linear advection scheme (trajectory-tracking scheme) is modified to achieve local mass conservation in this paper, which is more favorable to climate modeling. The discretized tracer parcels are volumes with interfaces instead of centroids. In 2D problems, the parcels are polygons and the interfaces are described by polygonal edges with a finite number. Because polygons will deform under the background wind field, a curvature-guard algorithm (CGA) is devised to retain accurate representation of the deformed interfaces among parcels. The tracer mass carried by parcels is mapped onto the regular latitude–longitude mesh by a first-order conservative remapping algorithm that can handle concave polygons. Several standard test cases have been carried out to show the effectiveness of the new scheme.

2012 ◽  
Vol 140 (2) ◽  
pp. 650-663 ◽  
Author(s):  
Li Dong ◽  
Bin Wang

A Lagrangian linear advection scheme, which is called the trajectory-tracking scheme, is proposed in this paper. The continuous tracer field has been discretized as finite tracer parcels that are points moving with the velocity field. By using the inverse distance weighted interpolation, the density carried by parcels is mapped onto the fixed Eulerian mesh (e.g., regular latitude–longitude mesh on the sphere) where the result is rendered. A renormalization technique has been adopted to accomplish mass conservation on the grids. The major advantage of this scheme is the ability to preserve discontinuity very well. Several standard tests have been carried out, including 1D and 2D Cartesian cases, and 2D spherical cases. The results show that the spurious numerical diffusion has been eliminated, which is a potential merit for the atmospheric modeling.


2007 ◽  
Vol 135 (12) ◽  
pp. 4214-4225 ◽  
Author(s):  
Rashmi Mittal ◽  
H. C. Upadhyaya ◽  
Om P. Sharma

Abstract A forward trajectory advection scheme has been designed for its use in an icosahedral–hexagonal grid model. The scheme has been evaluated with two-dimensional test cases: solid-body rotation and deformational flow; both depict important characteristics of atmospheric flows. The main motivation of this study is to achieve good accuracy without using higher-order interpolations in a numerical advection scheme, so that it may become viable in fine-resolution GCMs. The computation of the error norm shows its gradient as constant and the scheme is approximately first-order accurate. The other interesting feature of this study is that its downstream search algorithm reduces the complexity from O(n2) to O(n).


2007 ◽  
Vol 64 (6) ◽  
pp. 1794-1810 ◽  
Author(s):  
Ali R. Mohebalhojeh ◽  
Michael E. McIntyre

The effects of enforcing local mass conservation on the accuracy of non-Hamiltonian potential-vorticity- based balanced models (PBMs) are examined numerically for a set of chaotic shallow-water f-plane vortical flows in a doubly periodic square domain. The flows are spawned by an unstable jet and all have domain-maximum Froude and Rossby numbers Fr ∼0.5 and Ro ∼1, far from the usual asymptotic limits Ro → 0, Fr → 0, with Fr defined in the standard way as flow speed over gravity wave speed. The PBMs considered are the plain and hyperbalance PBMs defined in Part I. More precisely, they are the plain-δδ, plain-γγ, and plain-δγ PBMs and the corresponding hyperbalance PBMs, of various orders, where “order” is related to the number of time derivatives of the divergence equation used in defining balance and potential-vorticity inversion. For brevity the corresponding hyperbalance PBMs are called the hyper-δδ, hyper-γγ, and hyper-δγ PBMs, respectively. As proved in Part I, except for the leading-order plain-γγ each plain PBM violates local mass conservation. Each hyperbalance PBM results from enforcing local mass conservation on the corresponding plain PBM. The process of thus deriving a hyperbalance PBM from a plain PBM is referred to for brevity as plain-to-hyper conversion. The question is whether such conversion degrades the accuracy, as conjectured by McIntyre and Norton. Cumulative accuracy is tested by running each PBM alongside a suitably initialized primitive equation (PE) model for up to 30 days, corresponding to many vortex rotations. The accuracy is sensitively measured by the smallness of the ratio ϵ = ||QPBM − QPE||2/||QPE||2, where QPBM and QPE denote the potential vorticity fields of the PBM and the PEs, respectively, and || ||2 is the L2 norm. At 30 days the most accurate PBMs have ϵ ≈ 10−2 with PV fields hardly distinguishable visually from those of the PEs, even down to tiny details. Most accurate is defined by minimizing ϵ over all orders and truncation types δδ, γγ, and δγ. Contrary to McIntyre and Norton’s conjecture, the minimal ϵ values did not differ systematically or significantly between plain and hyperbalance PBMs. The smallness of ϵ suggests that the slow manifolds defined by the balance relations of the most accurate PBMs, both plain and hyperbalance, are astonishingly close to being invariant manifolds of the PEs, at least throughout those parts of phase space for which Ro ≲ 1 and Fr ≲ 0.5. As another way of quantifying the departures from such invariance, that is, of quantifying the fuzziness of the PEs’ slow quasimanifold, initialization experiments starting at days 1, 2, . . . 10 were carried out in which attention was focused on the amplitudes of inertia–gravity waves representing the imbalance arising in 1-day PE runs. With balance defined by the most accurate PBMs, and imbalance by departures therefrom, the results of the initialization experiments suggest a negative correlation between early imbalance and late cumulative error ϵ. In such near-optimal conditions the imbalance seems to be acting like weak background noise producing an effect analogous to so-called stochastic resonance, in that a slight increase in noise level brings PE behavior closer to the balanced behavior defined by the most accurate PBMs when measured cumulatively over 30 days.


2003 ◽  
Vol 208 ◽  
pp. 411-412
Author(s):  
Yusuke Imaeda ◽  
Shu-ichiro Inutsuka

Smoothed particle hydrodynamics (SPH) is one of the widely used methods to calculate the various astrophysical fluid dynamics. However, standard SPH cannot accurately describe the long-term evolution of shear flows: The large density error emerges within a dynamical timescale, and the amplitude of the error becomes larger than the value of density itself (Δρ ≳ ρ), when we take the mean separation of the particles as the smoothing length. The origin of error is due to the inaccurate description of the continuity equation in the standard SPH formalism. To ensure the local mass conservation property, we have reformulated SPH, in which we distinguish the particle velocity and the fluid velocity for the updation of the particle positions. We find that the present modification provides an accurate description of the density evolution in SPH.


2010 ◽  
Vol 138 (5) ◽  
pp. 1778-1791 ◽  
Author(s):  
Hann-Ming Henry Juang ◽  
Song-You Hong

Abstract A semi-Lagrangian advection scheme is developed for falling hydrometeors in hopes of replacing the conventional Eulerian scheme that has been widely used in the cloud microphysics scheme of numerical atmospheric models. This semi-Lagrangian scheme uses a forward advection method to determine the advection path with or without iteration, and advected mass in a two-time-level algorithm with mass conservation. Monotonicity is considered in mass-conserving interpolation between Lagrangian grids and model Eulerian grids, thus making it a positive definite advection scheme. For mass-conserving interpolation between the two grid systems, the piecewise constant method (PCM), piecewise linear method (PLM), and piecewise parabolic method (PPM) are proposed. The falling velocity at the bottom cell edge is modified to avoid unphysical deformation by scanning from the top layer to the bottom of the model, which enables the use of a large time step with reasonable accuracy. The scheme is implemented and tested in the Weather Research and Forecasting (WRF) Single-Moment 3-Class Microphysics Scheme (WSM3). In a theoretical test bed with constant terminal velocity, the proposed semi-Lagrangian algorithm shows that the higher-order interpolation scheme produces less diffusive features at maximal precipitation. Results from another idealized test bed with mass-weighted terminal velocity demonstrate that the accuracy of the proposed scheme is still satisfactory even with a time step of 120 s when the mean terminal velocity averaged at the departure and arrival points is employed. A two-dimensional (2D) squall-line test using the WSM3 scheme shows that the control run with the Eulerian advection scheme and the semi-Lagrangian run with the PCM method reveal similar results, whereas behaviors using the PLM and PPM are similar with higher-resolution features, such as mammatus-like clouds.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1993 ◽  
Author(s):  
Bo Li ◽  
Yudong Wang ◽  
Jian Li ◽  
Shengxian Cao

The cooperative, reliable and responsive characteristics make smart grid more popular than traditional power grid. However, with the extensive employment of smart grid concepts, the traditional centralized control methods expose a lot of shortcomings, such as communication congestion, computing complexity in central management systems, and so on. The distributed control method with flexible characteristics can meet the timeliness and effectiveness of information management in smart grid and ensure the information collection timely and the power dispatch economically. This article presents a decentralized approach based on multi agent system (MAS) for solving data collection and economic dispatch problem of smart grid. First, considering the generators and loads are distributed on many nodes in the space, a flooding-based consensus algorithm is proposed to achieve generator and load information for each agent. Then, a suitable distributed algorithm called λ-consensus is used for solving the economic dispatch problem, eventually, all generators can automatically minimize the total cost in a collective sense. Simulation results in standard test cases are presented to demonstrate the effectiveness of the proposed control strategy.


2007 ◽  
Vol 64 (6) ◽  
pp. 1782-1793 ◽  
Author(s):  
Ali R. Mohebalhojeh ◽  
Michael E. McIntyre

This paper considers stratified and shallow water non-Hamiltonian potential-vorticity-based balanced models (PBMs). These are constructed using the exact (Rossby or Rossby–Ertel) potential vorticity (PV). The most accurate known PBMs are those studied by McIntyre and Norton and by Mohebalhojeh and Dritschel. It is proved that, despite their astonishing accuracy, these PBMs all fail to conserve mass locally. Specifically, they exhibit velocity splitting in the sense of having two velocity fields, v and vm, the first to advect PV and the second to advect mass. The difference v − vm is nonzero in general, even if tiny. Unlike the different velocity splitting found in all Hamiltonian balanced models, the present splitting can be healed. The result is a previously unknown class of balanced models, here called “hyperbalance equations,” whose formal orders of accuracy can be made as high as those of any other PBM. The hyperbalance equations use a single velocity field v to advect mass as well as to advect and evaluate the exact PV.


1974 ◽  
Vol 41 (1) ◽  
pp. 111-116 ◽  
Author(s):  
T. R. Blake ◽  
J. F. Wilson

A numerical study of plane longitudinal waves in a nonlinear viscoelastic material is presented. The constitutive relationship and the conservation equations, in Lagrangian form, are formulated in an explicit first-order finite-difference manner. The mechanical behavior of the material is described by means of state and orientation variables and the associated differential equations. With the use of the numerical procedure we model wave-propagation experiments in polymethyl methacrylate and derive a constitutive relationship for that material. We then use this constitutive equation in a numerical study of the evolution of steady-state waves and we show that the time for the formation of these waves is inversely proportional to magnitude of the imposed velocity.


Sign in / Sign up

Export Citation Format

Share Document