scholarly journals Forward Semi-Lagrangian Advection with Mass Conservation and Positive Definiteness for Falling Hydrometeors

2010 ◽  
Vol 138 (5) ◽  
pp. 1778-1791 ◽  
Author(s):  
Hann-Ming Henry Juang ◽  
Song-You Hong

Abstract A semi-Lagrangian advection scheme is developed for falling hydrometeors in hopes of replacing the conventional Eulerian scheme that has been widely used in the cloud microphysics scheme of numerical atmospheric models. This semi-Lagrangian scheme uses a forward advection method to determine the advection path with or without iteration, and advected mass in a two-time-level algorithm with mass conservation. Monotonicity is considered in mass-conserving interpolation between Lagrangian grids and model Eulerian grids, thus making it a positive definite advection scheme. For mass-conserving interpolation between the two grid systems, the piecewise constant method (PCM), piecewise linear method (PLM), and piecewise parabolic method (PPM) are proposed. The falling velocity at the bottom cell edge is modified to avoid unphysical deformation by scanning from the top layer to the bottom of the model, which enables the use of a large time step with reasonable accuracy. The scheme is implemented and tested in the Weather Research and Forecasting (WRF) Single-Moment 3-Class Microphysics Scheme (WSM3). In a theoretical test bed with constant terminal velocity, the proposed semi-Lagrangian algorithm shows that the higher-order interpolation scheme produces less diffusive features at maximal precipitation. Results from another idealized test bed with mass-weighted terminal velocity demonstrate that the accuracy of the proposed scheme is still satisfactory even with a time step of 120 s when the mean terminal velocity averaged at the departure and arrival points is employed. A two-dimensional (2D) squall-line test using the WSM3 scheme shows that the control run with the Eulerian advection scheme and the semi-Lagrangian run with the PCM method reveal similar results, whereas behaviors using the PLM and PPM are similar with higher-resolution features, such as mammatus-like clouds.

2015 ◽  
Vol 72 (1) ◽  
pp. 287-311 ◽  
Author(s):  
Hugh Morrison ◽  
Jason A. Milbrandt

Abstract A method for the parameterization of ice-phase microphysics is proposed and used to develop a new bulk microphysics scheme. All ice-phase particles are represented by several physical properties that evolve freely in time and space. The scheme prognoses four ice mixing ratio variables, total mass, rime mass, rime volume, and number, allowing 4 degrees of freedom for representing the particle properties using a single category. This approach represents a significant departure from traditional microphysics schemes in which ice-phase hydrometeors are partitioned into various predefined categories (e.g., cloud ice, snow, and graupel) with prescribed characteristics. The liquid-phase component of the new scheme uses a standard two-moment, two-category approach. The proposed method and a complete description of the new predicted particle properties (P3) scheme are provided. Results from idealized model simulations of a two-dimensional squall line are presented that illustrate overall behavior of the scheme. Despite its use of a single ice-phase category, the scheme simulates a realistically wide range of particle characteristics in different regions of the squall line, consistent with observed ice particles in real squall lines. Sensitivity tests show that both the prediction of the rime mass fraction and the rime density are important for the simulation of the squall-line structure and precipitation.


2016 ◽  
Vol 144 (8) ◽  
pp. 2809-2829 ◽  
Author(s):  
Hugh Morrison ◽  
Anders A. Jensen ◽  
Jerry Y. Harrington ◽  
Jason A. Milbrandt

Abstract This paper discusses the advection of coupled hydrometeor quantities by air motion in atmospheric models. It is shown that any bulk property derived from a set of advected microphysical variables must meet certain conditions in order to be preserved during transport using linear or semilinear advection schemes when the property is initially uniform, with implications for physical consistency of the property. A new, efficient flux-based method for calculating hydrometeor advection, similar to vector transport applied previously in aerosol modeling, is also presented. In this method, called scaled flux vector transport (SFVT), lead scalars (the mass mixing ratios) are advected using the host model’s unmodified advection scheme and secondary scalars (e.g., number mixing ratios) are advected by appropriately scaling the lead scalar fluxes. By design, SFVT retains linear relationships between the advected scalars. Analytic tests reveal that mean errors using SFVT are similar to those incurred using the traditional approach of separately advecting each variable. SFVT is applied to the multimoment predicted particle properties bulk microphysics scheme in idealized two-dimensional squall-line simulations using the Weather Research and Forecasting Model. The computational cost in total wall clock run time is reduced by 10%–15% while producing solutions similar to the traditional approach. Thus, SFVT can reduce the overall cost of using multimoment bulk microphysics schemes, making them competitive with simpler schemes having fewer prognostic variables.


2021 ◽  
Vol 13 (19) ◽  
pp. 3860
Author(s):  
Sungbin Jang ◽  
Kyo-Sun Sunny Lim ◽  
Jeongsu Ko ◽  
Kwonil Kim ◽  
GyuWon Lee ◽  
...  

The Weather Research and Forecasting (WRF) Double-Moment 7-Class (WDM7) cloud microphysics scheme was developed to parameterize cloud and precipitation processes explicitly for mesoscale phenomena in the Korean Integrated Model system. However, the WDM7 scheme has not been evaluated for any precipitating convection system over the Korean peninsula. This study modified WDM7 and evaluated simulated convection during summer and winter. The suggested modifications included the integration of the new fall velocity–diameter relationship of raindrops and mass-weighted terminal velocity of solid-phase precipitable hydrometeors (the latter is for representing mixed-phase particles). The mass-weighted terminal velocity for snow and graupel has been suggested by Dudhia et al. (2008) to allow for a more realistic representation of partially rimed particles. The WDM7 scheme having an additional hail category does not apply this terminal velocity only for hail. Additionally, the impact of enhanced collision-coalescence (C-C) efficiency was investigated. An experiment with enhanced C-C efficiency overall improved the precipitation skill scores, such as probability of detection, equitable threat score, and spatial pattern correlation, compared with those of the control experiment for the summer and winter cases. With application of the new mass-weighted terminal velocity of solid-phase hydrometeors, the hail mixing ratio at the surface was considerably reduced, and rain shafts slowed down low-level winds for the winter convective system. Consequently, the simulated hydrometeors were consistent with observations retrieved via remote sensing. The fall velocity–diameter relationship of raindrops further reduced the cloud ice amount. The proposed modifications in our study improved the simulated precipitation and hydrometeor profiles, especially for the selected winter convection case.


2009 ◽  
Vol 137 (3) ◽  
pp. 991-1007 ◽  
Author(s):  
H. Morrison ◽  
G. Thompson ◽  
V. Tatarskii

Abstract A new two-moment cloud microphysics scheme predicting the mixing ratios and number concentrations of five species (i.e., cloud droplets, cloud ice, snow, rain, and graupel) has been implemented into the Weather Research and Forecasting model (WRF). This scheme is used to investigate the formation and evolution of trailing stratiform precipitation in an idealized two-dimensional squall line. Results are compared to those using a one-moment version of the scheme that predicts only the mixing ratios of the species, and diagnoses the number concentrations from the specified size distribution intercept parameter and predicted mixing ratio. The overall structure of the storm is similar using either the one- or two-moment schemes, although there are notable differences. The two-moment (2-M) scheme produces a widespread region of trailing stratiform precipitation within several hours of the storm formation. In contrast, there is negligible trailing stratiform precipitation using the one-moment (1-M) scheme. The primary reason for this difference are reduced rain evaporation rates in 2-M compared to 1-M in the trailing stratiform region, leading directly to greater rain mixing ratios and surface rainfall rates. Second, increased rain evaporation rates in 2-M compared to 1-M in the convective region at midlevels result in weaker convective updraft cells and increased midlevel detrainment and flux of positively buoyant air from the convective into the stratiform region. This flux is in turn associated with a stronger mesoscale updraft in the stratiform region and enhanced ice growth rates. The reduced (increased) rates of rain evaporation in the stratiform (convective) regions in 2-M are associated with differences in the predicted rain size distribution intercept parameter (which was specified as a constant in 1-M) between the two regions. This variability is consistent with surface disdrometer measurements in previous studies that show a rapid decrease of the rain intercept parameter during the transition from convective to stratiform rainfall.


2009 ◽  
Vol 48 (1) ◽  
pp. 61-76 ◽  
Author(s):  
Song-You Hong ◽  
Kyo-Sun Sunny Lim ◽  
Ju-Hye Kim ◽  
Jeong-Ock Jade Lim ◽  
Jimy Dudhia

Abstract This study examines the relative importance of ice-phase microphysics and sedimentation velocity for hydrometeors in bulk microphysics schemes. The two bulk microphysics schemes having the same number of prognostic water substances, the Weather Research and Forecasting (WRF) Single-Moment 6-Class Microphysics Scheme (WSM6) and the Purdue–Lin scheme (PLIN), are evaluated for a 2D idealized storm case and for a 3D heavy rainfall event over Korea. The relative importance of microphysics and sedimentation velocity for ice particles is illuminated by the additional experiments that exchange the sedimentation velocity formula for graupel in the two schemes. In a 2D idealized storm simulation test bed, it is found that, relative to the PLIN scheme, the WSM6 scheme develops the storm late with weakened intensity because of a slower sedimentation velocity for graupel. Such a weakened intensity of precipitation also appears in a 3D model framework when the WSM6 scheme is used, in conjunction with the overall distribution of the precipitation band southward toward what was observed. The major reason is found to be the ice-phase microphysics of the WSM6 and related ice-cloud–radiation feedback, rather than the smaller terminal velocity for graupel in the WSM6 than in the PLIN scheme.


2008 ◽  
Vol 21 (15) ◽  
pp. 3642-3659 ◽  
Author(s):  
Hugh Morrison ◽  
Andrew Gettelman

Abstract A new two-moment stratiform cloud microphysics scheme in a general circulation model is described. Prognostic variables include cloud droplet and cloud ice mass mixing ratios and number concentrations. The scheme treats several microphysical processes, including hydrometeor collection, condensation/evaporation, freezing, melting, and sedimentation. The activation of droplets on aerosol is physically based and coupled to a subgrid vertical velocity. Unique aspects of the scheme, relative to existing two-moment schemes developed for general circulation models, are the diagnostic treatment of rain and snow number concentration and mixing ratio and the explicit treatment of subgrid cloud water variability for calculation of the microphysical process rates. Numerical aspects of the scheme are described in detail using idealized one-dimensional offline tests of the microphysics. Sensitivity of the scheme to time step, vertical resolution, and numerical method for diagnostic precipitation is investigated over a range of conditions. It is found that, in general, two substeps are required for numerical stability and reasonably small time truncation errors using a time step of 20 min; however, substepping is only required for the precipitation microphysical processes rather than the entire scheme. A new numerical approach for the diagnostic rain and snow produces reasonable results compared to a benchmark simulation, especially at low vertical resolution. Part II of this study details results of the scheme in single-column and global simulations, including comparison with observations.


2015 ◽  
Vol 72 (1) ◽  
pp. 312-339 ◽  
Author(s):  
Hugh Morrison ◽  
Jason A. Milbrandt ◽  
George H. Bryan ◽  
Kyoko Ikeda ◽  
Sarah A. Tessendorf ◽  
...  

Abstract A new microphysics scheme has been developed based on the prediction of bulk particle properties for a single ice-phase category, in contrast to the traditional approach of separating ice into various predefined species (e.g., cloud ice, snow, and graupel). In this paper, the new predicted particle properties (P3) scheme, described in Part I of this series, is tested in three-dimensional simulations using the Weather Research and Forecasting (WRF) Model for two contrasting well-observed cases: a midlatitude squall line and winter orographic precipitation. Results are also compared with simulations using other schemes in WRF. Simulations with P3 can produce a wide variety of particle characteristics despite having only one free ice-phase category. For the squall line, it produces dense, fast-falling, hail-like ice near convective updraft cores and lower-density, slower-falling ice elsewhere. Sensitivity tests show that this is critical for simulating high precipitation rates observed along the leading edge of the storm. In contrast, schemes that represent rimed ice as graupel, with lower fall speeds than hail, produce lower peak precipitation rates and wider, less distinct, and less realistic regions of high convective reflectivity. For the orographic precipitation case, P3 produces areas of relatively fast-falling ice with characteristics of rimed snow and low- to medium-density graupel on the windward slope. This leads to less precipitation on leeward slopes and more on windward slopes compared to the other schemes that produce large amounts of snow relative to graupel (with generally the opposite for schemes with significant graupel relative to snow). Overall, the new scheme produces reasonable results for a reduced computational cost.


2021 ◽  
Vol 62 ◽  
Author(s):  
Joshua Hartigan ◽  
Shev MacNamara ◽  
Lance Leslie ◽  
Milton Speer

On 16 December 2015 a severe thunderstorm and associated tornado affected Sydney causing widespread damage and insured losses of $206 million. Severe impacts occurred in Kurnell, requiring repairs to Sydney's desalination plant which supplies up to 15% of Sydney water during drought, with repairs only completed at the end of 2018. Climatologically, this storm was unusual as it occurred during the morning and had developed over the ocean, rather than developing inland during the afternoon as is the case for many severe storms impacting the Sydney region. Simulations of the Kurnell storm were conducted using the Weather Research and Forecasting (WRF) model on a double nested domain using the Morrison microphysics scheme and the NSSL 2-moment 4-ice microphysics scheme. Both simulations produced severe storms that followed paths similar to the observed storm. However, the storm produced under the Morrison scheme did not have the same morphology as the observed storm. Meanwhile, the storm simulated with the NSSL scheme displayed cyclical low- and mid-level mesocyclone development, which was observed in the Kurnell storm, highlighting that the atmosphere supported the development of severe rotating thunderstorms with the potential for tornadogenesis. The NSSL storm also produced severe hail and surface winds, similar to observations. The ability of WRF to simulate general convective characteristics and a storm similar to that observed displays the applicability of this model to study the causes of severe high-impact Australian thunderstorms. References J. T. Allen and E. R. Allen. A review of severe thunderstorms in Australia. Atmos. Res., 178:347–366, 2016. doi:10.1016/j.atmosres.2016.03.011. Bureau of Meteorology. Severe Storms Archive, 2020. URL http://www.bom.gov.au/australia/stormarchive/. D. T. Dawson II, M. Xue, J. A. Milbrandt, and M. K. Yau. Comparison of evaporation and cold pool development between single-moment and multimoment bulk microphysics schemes in idealized simulations of tornadic thunderstorms. Month. Wea. Rev., 138:1152–1171, 2010. doi:10.1175/2009MWR2956.1. H. Hersbach, B. Bell, P. Berrisford, S. Hirahara, A. Horanyi, J. Munoz-Sabater, J. Nicolas, C. Peubey, R. Radu, D. Schepers, et al. The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146:1999–2049, 2020. doi:10.1002/qj.3803. Insurance Council of Australia. Victorian bushfire losses push summer catastrophe bill past $550m, 2016. E. R. Mansell, C. L. Ziegler, and E. C. Bruning. Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67:171–194, 2010. doi:10.1175/2009JAS2965.1. R. C. Miller. Notes on analysis and severe-storm forecasting procedures of the Air Force Global Weather Central, volume 200. Air Weather Service, 1972. URL https://apps.dtic.mil/sti/citations/AD0744042. H. Morrison, J. A. Curry, and V. I. Khvorostyanov. A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62:1665–1677, 2005. doi:10.1175/JAS3446.1. H. Morrison, G. Thompson, and V. Tatarskii. Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Month. Wea. Rev., 137:991–1007, 2009. doi:10.1175/2008MWR2556.1. J. G. Powers, J. B. Klemp, W. C. Skamarock, C. A. Davis, J. Dudhia, D. O. Gill, J. L. Coen, D. J. Gochis, R. Ahmadov, S. E. Peckham, et al. The Weather Research and Forecasting Model: Overview, system efforts, and future directions. Bull. Am. Meteor. Soc., 98:1717–1737, 2017. doi:10.1175/BAMS-D-15-00308.1. H. Richter, A. Protat, J. Taylor, and J. Soderholm. Doppler radar and storm environment observations of a maritime tornadic supercell in Sydney, Australia. In Preprints, 28th Conf. on Severe Local Storms, Portland OR, Amer. Meteor. Soc. P, 2016. W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, Z. Liu, J. Berner, W. Wang, J. G. Powers, M. G. Duda, D. Barker, and X.-Y. Huang. A description of the advanced research WRF Model version 4. Technical report, 2019. Storm Prediction Center. The Enhanced Fujita Scale (EF Scale), 2014. URL https://www.spc.noaa.gov/efscale/. R. A. Warren, H. A. Ramsay, S. T. Siems, M. J. Manton, J. R. Peter, A. Protat, and A. Pillalamarri. Radar-based climatology of damaging hailstorms in Brisbane and Sydney, Australia. Quart. J. Roy. Meteor. Soc., 146:505–530, 2020. doi:10.1002/qj.3693.


2010 ◽  
Vol 138 (5) ◽  
pp. 1587-1612 ◽  
Author(s):  
Kyo-Sun Sunny Lim ◽  
Song-You Hong

Abstract A new double-moment bulk cloud microphysics scheme, the Weather Research and Forecasting (WRF) Double-Moment 6-class (WDM6) Microphysics scheme, which is based on the WRF Single-Moment 6-class (WSM6) Microphysics scheme, has been developed. In addition to the prediction for the mixing ratios of six water species (water vapor, cloud droplets, cloud ice, snow, rain, and graupel) in the WSM6 scheme, the number concentrations for cloud and rainwater are also predicted in the WDM6 scheme, together with a prognostic variable of cloud condensation nuclei (CCN) number concentration. The new scheme was evaluated on an idealized 2D thunderstorm test bed. Compared to the simulations from the WSM6 scheme, there are greater differences in the droplet concentration between the convective core and stratiform region in WDM6. The reduction of light precipitation and the increase of moderate precipitation accompanying a marked radar bright band near the freezing level from the WDM6 simulation tend to alleviate existing systematic biases in the case of the WSM6 scheme. The strength of this new microphysics scheme is its ability to allow flexibility in variable raindrop size distribution by predicting the number concentrations of clouds and rain, coupled with the explicit CCN distribution, at a reasonable computational cost.


Sign in / Sign up

Export Citation Format

Share Document