scholarly journals Implementing Large-Eddy Simulation Capability in a Compressible Mesoscale Model

2014 ◽  
Vol 142 (8) ◽  
pp. 2733-2750 ◽  
Author(s):  
Nicolas Gasset ◽  
Robert Benoit ◽  
Christian Masson

Abstract The large size of modern wind turbines and wind farms triggers processes above the surface layer, which extend to the junction between microscales and mesoscales, and pushes the limits of existing approaches to predict the wind. The main objectives of this study are thus to introduce and evaluate an approach that will better account for physical processes within the atmospheric boundary layer (ABL), and allow for both microscale and mesoscale modeling. The proposed method, in which mathematical model and main numerical aspects are presented, combines a mesoscale approach with a large-eddy simulation (LES) model based on the Compressible Community Mesoscale Model (MC2). It is evaluated relying on a shear-driven ABL case allowing the authors to assess the model behavior at very high resolution as well as more specific numerical aspects such as the vertical discretization and time and space splitting of turbulence-related terms. The proposed LES-capable mesoscale model is shown to perform on par with other similar reference LES models, while being slightly more dissipative. A new vertical discretization of the turbulent processes eliminates a spurious numerical mode in the solution. Finally, the splitting of horizontal and vertical turbulence-related terms is shown to have no impact on the results of the test cases. It is thus demonstrated that the revised MC2 is suitable at both microscales and mesoscales, thus setting a strong foundation for future work.

Author(s):  
Jahrul M. Alam ◽  
Anton Afanassiev ◽  
Jagdeep Singh

Abstract Wind farms extract energy from the lowest part of the atmospheric boundary layer (ABL). Thus, characterizing the impacts of atmospheric turbulence — precisely, which aspect of it enhances or hinders the capacity factor of wind farms — is currently the least understood and the most demanding topic of wind energy research. This article demonstrates a Large Eddy Simulation (LES) of atmospheric turbulence around an array of 41 full-scale wind turbines with a rotor diameter of 126 m. A wall-adaptive subgrid-scale (SGS) model for atmospheric turbulence around wind farms has been examined. For a moist-free atmosphere in the afternoon, the spectra of kinetic energy are compared with Kolmogorov’s energy spectrum. The power production is discussed with respect to staggered arrangements of turbines. Results show that the LES model has the potential to account for atmospheric turbulence for optimizing tower placements in wind farms.


2022 ◽  
Vol 22 (1) ◽  
pp. 319-333
Author(s):  
Ian Boutle ◽  
Wayne Angevine ◽  
Jian-Wen Bao ◽  
Thierry Bergot ◽  
Ritthik Bhattacharya ◽  
...  

Abstract. An intercomparison between 10 single-column (SCM) and 5 large-eddy simulation (LES) models is presented for a radiation fog case study inspired by the Local and Non-local Fog Experiment (LANFEX) field campaign. Seven of the SCMs represent single-column equivalents of operational numerical weather prediction (NWP) models, whilst three are research-grade SCMs designed for fog simulation, and the LESs are designed to reproduce in the best manner currently possible the underlying physical processes governing fog formation. The LES model results are of variable quality and do not provide a consistent baseline against which to compare the NWP models, particularly under high aerosol or cloud droplet number concentration (CDNC) conditions. The main SCM bias appears to be toward the overdevelopment of fog, i.e. fog which is too thick, although the inter-model variability is large. In reality there is a subtle balance between water lost to the surface and water condensed into fog, and the ability of a model to accurately simulate this process strongly determines the quality of its forecast. Some NWP SCMs do not represent fundamental components of this process (e.g. cloud droplet sedimentation) and therefore are naturally hampered in their ability to deliver accurate simulations. Finally, we show that modelled fog development is as sensitive to the shape of the cloud droplet size distribution, a rarely studied or modified part of the microphysical parameterisation, as it is to the underlying aerosol or CDNC.


Author(s):  
Engin Cetindogan ◽  
Govert de With ◽  
Arne E. Holdo̸

A computational study of unsteady, separated fluid flow was made using the Large Eddy Simulation (LES). As flow problem the turbulent flow past a circular cylinder at a Reynolds number of Re = 3900 was chosen. The objective of this work was to study the numerical and modelling aspects of the dynamic Germano-LES turbulence model. Before LES can be used for applications of practical relevance, such as the flow around a complete aircraft or automobile, extensive tests must be carried out on simpler configurations to understand the quality of LES. Also, the influence of different grid resolutions was examined. Due to the fact of a low Reynolds number, no-slip boundary conditions were used at solid walls. Two different subgrid scale models were applied. In recent years several simulations were carried out using the Smagorinsky-LES model but there is still a lack of experience using the dynamic Germano-LES model, which takes the local flow parameters into account. Several simulations with different parameters and grid-models were carried out both with the Germano-LES model and the Smagorinsky-LES model. Comparisons were made between these two models as well as with several experimental data taken from literature.


Author(s):  
Zixiang Sun ◽  
Klas Lindblad ◽  
John W. Chew ◽  
Colin Young

The buoyancy-affected flow in rotating disc cavities, such as occurs in compressor disc stacks, is known to be complex and difficult to predict. In the present work large eddy simulation (LES) and unsteady Reynolds-averaged Navier-Stokes (RANS) solutions are compared with other workers’ measurements from an engine representative test rig. The Smagorinsky-Lilly model was employed in the LES simulations, and the RNG k-ε turbulence model was used in the RANS modelling. Three test cases were investigated in a range of Grashof number Gr = 1.87 to 7.41×108 and buoyancy number Bo = 1.65 to 11.5. Consistent with experimental observation, strong unsteadiness was clearly observed in the results of both models, however the LES results exhibited a finer flow structure than the RANS solution. The LES model also achieved significantly better agreement with velocity and heat transfer measurements than the RANS model. Also, temperature contours obtained from the LES results have a finer structure than the tangential velocity contours. Based on the results obtained in this work, further application of LES to flows of industrial complexity is recommended.


2014 ◽  
Vol 11 (1) ◽  
pp. 75-81 ◽  
Author(s):  
H. Nakayama ◽  
T. Takemi ◽  
H. Nagai

Abstract. Contaminant gas dispersion in atmospheric boundary layer is of great concern to public health. For the accurate prediction of the dispersion problem, the present study numerically investigates the behavior of plume dispersion by taking into account the atmospheric stability which is classified into three types; neutral, stable, and convective boundary layers. We first proposed an efficient method to generate spatially-developing, thermally-stratified boundary layers and examined the usefulness of our approach by comparing to wind tunnel experimental data for various thermal boundary layers. The spreads of plume in the spanwise direction are quantitatively underestimated especially at large downwind distances from the point source, owing to the underestimation of turbulence intensities for the spanwise component; however, the dependence of the spanwise spreads to atmospheric stability is well represented in a qualitative sense. It was shown that the large-eddy simulation (LES) model provides physically reasonable results.


Sign in / Sign up

Export Citation Format

Share Document