Sea Ice Enhancements to Polar WRF*

2015 ◽  
Vol 143 (6) ◽  
pp. 2363-2385 ◽  
Author(s):  
Keith M. Hines ◽  
David H. Bromwich ◽  
Lesheng Bai ◽  
Cecilia M. Bitz ◽  
Jordan G. Powers ◽  
...  

Abstract The Polar Weather Research and Forecasting Model (Polar WRF), a polar-optimized version of the WRF Model, is developed and made available to the community by Ohio State University’s Polar Meteorology Group (PMG) as a code supplement to the WRF release from the National Center for Atmospheric Research (NCAR). While annual NCAR official releases contain polar modifications, the PMG provides very recent updates to users. PMG supplement versions up to WRF version 3.4 include modified Noah land surface model sea ice representation, allowing the specification of variable sea ice thickness and snow depth over sea ice rather than the default 3-m thickness and 0.05-m snow depth. Starting with WRF V3.5, these options are implemented by NCAR into the standard WRF release. Gridded distributions of Arctic ice thickness and snow depth over sea ice have recently become available. Their impacts are tested with PMG’s WRF V3.5-based Polar WRF in two case studies. First, 20-km-resolution model results for January 1998 are compared with observations during the Surface Heat Budget of the Arctic Ocean project. Polar WRF using analyzed thickness and snow depth fields appears to simulate January 1998 slightly better than WRF without polar settings selected. Sensitivity tests show that the simulated impacts of realistic variability in sea ice thickness and snow depth on near-surface temperature is several degrees. The 40-km resolution simulations of a second case study covering Europe and the Arctic Ocean demonstrate remote impacts of Arctic sea ice thickness on midlatitude synoptic meteorology that develop within 2 weeks during a winter 2012 blocking event.

2020 ◽  
Author(s):  
Alex Cabaj ◽  
Paul Kushner ◽  
Alek Petty ◽  
Stephen Howell ◽  
Christopher Fletcher

<p><span>Snow on Arctic sea ice plays multiple—and sometimes contrasting—roles in several feedbacks between sea ice and the global climate </span><span>system.</span><span> For example, the presence of snow on sea ice may mitigate sea ice melt by</span><span> increasing the sea ice albedo </span><span>and enhancing the ice-albedo feedback. Conversely, snow can</span><span> in</span><span>hibit sea ice growth by insulating the ice from the atmosphere during the </span><span>sea ice </span><span>growth season. </span><span>In addition to its contribution to sea ice feedbacks, snow on sea ice also poses a challenge for sea ice observations. </span><span>In particular, </span><span>snow </span><span>contributes to uncertaint</span><span>ies</span><span> in retrievals of sea ice thickness from satellite altimetry </span><span>measurements, </span><span>such as those from ICESat-2</span><span>. </span><span>Snow-on-sea-ice models can</span><span> produce basin-wide snow depth estimates, but these models require snowfall input from reanalysis products. In-situ snowfall measurements are a</span><span>bsent</span><span> over most of the Arctic Ocean, so it can be difficult to determine which reanalysis </span><span>snowfall</span><span> product is b</span><span>est</span><span> suited to be used as</span><span> input for a snow-on-sea-ice model.</span></p><p><span>In the absence of in-situ snowfall rate measurements, </span><span>measurements from </span><span>satellite instruments can be used to quantify snowfall over the Arctic Ocean</span><span>. </span><span>The CloudSat satellite, which is equipped with a 94 GHz Cloud Profiling Radar instrument, measures vertical radar reflectivity profiles from which snowfall rate</span><span>s</span><span> can be retrieved. </span> <span>T</span><span>his instrument</span><span> provides the most extensive high-latitude snowfall rate observation dataset currently available. </span><span>CloudSat’s near-polar orbit enables it to make measurements at latitudes up to 82°N, with a 16-day repeat cycle, </span><span>over the time period from 2006-2016.</span></p><p><span>We present a calibration of reanalysis snowfall to CloudSat observations over the Arctic Ocean, which we then apply to reanalysis snowfall input for the NASA Eulerian Snow On Sea Ice Model (NESOSIM). This calibration reduces the spread in snow depths produced by NESOSIM w</span><span>hen</span><span> different reanalysis inputs </span><span>are used</span><span>. </span><span>In light of this calibration, we revise the NESOSIM parametrizations of wind-driven snow processes, and we characterize the uncertainties in NESOSIM-generated snow depths resulting from uncertainties in snowfall input. </span><span>We then extend this analysis further to estimate the resulting uncertainties in sea ice thickness retrieved from ICESat-2 when snow depth estimates from NESOSIM are used as input for the retrieval.</span></p>


2009 ◽  
Vol 22 (1) ◽  
pp. 165-176 ◽  
Author(s):  
R. W. Lindsay ◽  
J. Zhang ◽  
A. Schweiger ◽  
M. Steele ◽  
H. Stern

Abstract The minimum of Arctic sea ice extent in the summer of 2007 was unprecedented in the historical record. A coupled ice–ocean model is used to determine the state of the ice and ocean over the past 29 yr to investigate the causes of this ice extent minimum within a historical perspective. It is found that even though the 2007 ice extent was strongly anomalous, the loss in total ice mass was not. Rather, the 2007 ice mass loss is largely consistent with a steady decrease in ice thickness that began in 1987. Since then, the simulated mean September ice thickness within the Arctic Ocean has declined from 3.7 to 2.6 m at a rate of −0.57 m decade−1. Both the area coverage of thin ice at the beginning of the melt season and the total volume of ice lost in the summer have been steadily increasing. The combined impact of these two trends caused a large reduction in the September mean ice concentration in the Arctic Ocean. This created conditions during the summer of 2007 that allowed persistent winds to push the remaining ice from the Pacific side to the Atlantic side of the basin and more than usual into the Greenland Sea. This exposed large areas of open water, resulting in the record ice extent anomaly.


2010 ◽  
Vol 11 (1) ◽  
pp. 199-210 ◽  
Author(s):  
Yi-Ching Chung ◽  
Stéphane Bélair ◽  
Jocelyn Mailhot

Abstract The new Recherche Prévision Numérique (NEW-RPN) model, a coupled system including a multilayer snow thermal model (SNTHERM) and the sea ice model currently used in the Meteorological Service of Canada (MSC) operational forecasting system, was evaluated in a one-dimensional mode using meteorological observations from the Surface Heat Budget of the Arctic Ocean (SHEBA)’s Pittsburgh site in the Arctic Ocean collected during 1997/98. Two parameters simulated by NEW-RPN (i.e., snow depth and ice thickness) are compared with SHEBA’s observations and with simulations from RPN, MSC’s current coupled system (the same sea ice model and a single-layer snow model). Results show that NEW-RPN exhibits better agreement for the timing of snow depletion and for ice thickness. The profiles of snow thermal conductivity in NEW-RPN show considerable variability across the snow layers, but the mean value (0.39 W m−1 K−1) is within the range of reported observations for SHEBA. This value is larger than 0.31 W m−1 K−1, which is commonly used in single-layer snow models. Of particular interest in NEW-RPN’s simulation is the strong temperature stratification of the snowpack, which indicates that a multilayer snow model is needed in the SHEBA scenario. A sensitivity analysis indicates that snow compaction is also a crucial process for a realistic representation of the snowpack within the snow/sea ice system. NEW-RPN’s overestimation of snow depth may be related to other processes not included in the study, such as small-scale horizontal variability of snow depth and blowing snow processes.


2021 ◽  
Author(s):  
Alek Petty ◽  
Nicole Keeney ◽  
Alex Cabaj ◽  
Paul Kushner ◽  
Nathan Kurtz ◽  
...  

<div> <div> <div> <div> <p>National Aeronautics and Space Administration's (NASA's) Ice, Cloud, and land Elevation Satellite‐ 2 (ICESat‐2) mission was launched in September 2018 and is now providing routine, very high‐resolution estimates of surface height/type (the ATL07 product) and freeboard (the ATL10 product) across the Arctic and Southern Oceans. In recent work we used snow depth and density estimates from the NASA Eulerian Snow on Sea Ice Model (NESOSIM) together with ATL10 freeboard data to estimate sea ice thickness across the entire Arctic Ocean. Here we provide an overview of updates made to both the underlying ATL10 freeboard product and the NESOSIM model, and the subsequent impacts on our estimates of sea ice thickness including updated comparisons to the original ICESat mission and ESA’s CryoSat-2. Finally we compare our Arctic ice thickness estimates from the 2018-2019 and 2019-2020 winters and discuss possible causes of these differences based on an analysis of atmospheric data (ERA5), ice drift (NSIDC) and ice type (OSI SAF).</p> </div> </div> </div> </div>


2020 ◽  
Author(s):  
Bin Cheng ◽  
Timo Vihma ◽  
Zeling Liao ◽  
Ruibo Lei ◽  
Mario Hoppmann ◽  
...  

<p>A thermistor-string-based Snow and Ice Mass Balance Array (SIMBA) has been developed in recent years and used for monitoring snow and ice mass balance in the Arctic Ocean. SIMBA measures vertical environment temperature (ET) profiles through the air-snow-sea ice-ocean column using a thermistor string (5 m long, sensor spacing 2cm). Each thermistor sensor equipped with a small identical heating element. A small voltage was applied to the heating element so that the heat energy liberated in the vicinity of each sensor is the same. The heating time intervals lasted 60 s and 120 s, respectively. The heating temperatures (HT) after these two intervals were recorded. The ET was measured 4 times a day and once per day for the HT.</p><p>A total 15 SIMBA buoys have been deployed in the Arctic Ocean during the Chinese National Arctic Research Expedition (CHINARE) 2018 and the Nansen and Amundsen Basins Observational System (NABOS) 2018 field expeditions in late autumn. We applied a recently developed SIMBA algorithm to retrieve snow and ice thickness using SIMBA ET and HT temperature data. We focus particularly on sea ice bottom evolution during Arctic winter.</p><p>In mid-September 2018, 5 SIMBA buoys were deployed in the East Siberian Sea (NABOS2018) where snow was in practical zero cm and ice thickness ranged between 1.8 m – 2.6 m. By the end of May, those SIMBA buoys were drifted in the central Arctic where snow and ice thicknesses were around 0.05m - 0.2m and 2.6m – 3.2m, respectively. For those 10 SIMBA buoys deployed by the CHINARE2018 in the Chukchi Sea and Canadian Basin, the initial snow and ice thickness were ranged between 0.05m – 0.1cm and 1.5m – 2.5m, respectively.  By the end of May, those SIMBA buoys were drifted toward the north of Greenland where snow and ice thicknesses were around 0.2m - 0.3m and 2.0m – 3.5m, respectively. The ice bottom evolution derived by SIMBA algorithm agrees well with SIMBA HT identified ice-ocean interfaces. We also perform a preliminary investigation of sea ice bottom evolution measured by several SIMBA buoys deployed during the MOSAiC leg1 field campaign in winter 2019/2020.  </p>


2021 ◽  
Author(s):  
Hiroshi Sumata ◽  
Laura de Steur ◽  
Dmitry Divine ◽  
Olga Pavlova ◽  
Sebastian Gerland

<p><span><span>Fram Strait is the major gateway connecting the Arctic Ocean and the northern North Atlantic Ocean where about 80 to 90% of sea ice outflow from the Arctic Ocean takes place. Long-term observations from the Fram Strait Arctic Outflow Observatory maintained by the Norwegian Polar Institute captured an unprecedented decline<!-- should we somehow add information that this statement is limited to the time since the early 1990s? --><!-- Reply to Sebastian Gerland (2021/01/12, 15:45): "..." I slightly modified the sentence to mention this. --> of sea ice thickness in 2017 – 2018 since comprehensive observations started in the early 1990s. Four Ice Profiling Sonars moored in the East Greenland Current in Fram Strait simultaneously recorded 50 – 70 cm decline of annual mean ice thickness in comparison with preceding years. A backward trajectory analysis revealed that the decline was attributed to an anomalous sea level pressure pattern from 2017 autumn to 2018 summer. Southerly wind associated with a dipole pressure anomaly between Greenland and the Barents Sea prevented southward motion of ice floes north of Fram Strait. Hence ice pack was exposed to warm Atlantic Water in the north of Fram Strait 2 – 3 times longer than the average year, allowing more melt <!-- should also slower freezing or reduced freezing rates mentioned here during winter and spring (in addition to melt in summer and autumn)? --><!-- Reply to Sebastian Gerland (2021/01/12, 15:46): "..." I would like to keep this sentence as it is, since the analysis implies sea ice melt occurred in the vicinity of Fram Strait in winter (probably due to ocean heat flux), though we don’t have direct measurements of 2018 event. This could be an interesting implications of this study, and seeds for further investigation. -->to happen. At the same time, the dipole anomaly was responsible for the slowest observed annual mean ice drift speed in Fram Strait in the last two decades. As a consequence of the record minimum of ice thickness and the slowest drift speed, the sea ice volume transport through the Fram Strait dropped by more than 50% in comparison with the 2010 – 2017 average.</span></span></p>


Sign in / Sign up

Export Citation Format

Share Document