Winter Arctic sea ice bottom evolution detected by thermistor string-based ice mass balance buoys (SIMBA)

Author(s):  
Bin Cheng ◽  
Timo Vihma ◽  
Zeling Liao ◽  
Ruibo Lei ◽  
Mario Hoppmann ◽  
...  

<p>A thermistor-string-based Snow and Ice Mass Balance Array (SIMBA) has been developed in recent years and used for monitoring snow and ice mass balance in the Arctic Ocean. SIMBA measures vertical environment temperature (ET) profiles through the air-snow-sea ice-ocean column using a thermistor string (5 m long, sensor spacing 2cm). Each thermistor sensor equipped with a small identical heating element. A small voltage was applied to the heating element so that the heat energy liberated in the vicinity of each sensor is the same. The heating time intervals lasted 60 s and 120 s, respectively. The heating temperatures (HT) after these two intervals were recorded. The ET was measured 4 times a day and once per day for the HT.</p><p>A total 15 SIMBA buoys have been deployed in the Arctic Ocean during the Chinese National Arctic Research Expedition (CHINARE) 2018 and the Nansen and Amundsen Basins Observational System (NABOS) 2018 field expeditions in late autumn. We applied a recently developed SIMBA algorithm to retrieve snow and ice thickness using SIMBA ET and HT temperature data. We focus particularly on sea ice bottom evolution during Arctic winter.</p><p>In mid-September 2018, 5 SIMBA buoys were deployed in the East Siberian Sea (NABOS2018) where snow was in practical zero cm and ice thickness ranged between 1.8 m – 2.6 m. By the end of May, those SIMBA buoys were drifted in the central Arctic where snow and ice thicknesses were around 0.05m - 0.2m and 2.6m – 3.2m, respectively. For those 10 SIMBA buoys deployed by the CHINARE2018 in the Chukchi Sea and Canadian Basin, the initial snow and ice thickness were ranged between 0.05m – 0.1cm and 1.5m – 2.5m, respectively.  By the end of May, those SIMBA buoys were drifted toward the north of Greenland where snow and ice thicknesses were around 0.2m - 0.3m and 2.0m – 3.5m, respectively. The ice bottom evolution derived by SIMBA algorithm agrees well with SIMBA HT identified ice-ocean interfaces. We also perform a preliminary investigation of sea ice bottom evolution measured by several SIMBA buoys deployed during the MOSAiC leg1 field campaign in winter 2019/2020.  </p>

2009 ◽  
Vol 22 (1) ◽  
pp. 165-176 ◽  
Author(s):  
R. W. Lindsay ◽  
J. Zhang ◽  
A. Schweiger ◽  
M. Steele ◽  
H. Stern

Abstract The minimum of Arctic sea ice extent in the summer of 2007 was unprecedented in the historical record. A coupled ice–ocean model is used to determine the state of the ice and ocean over the past 29 yr to investigate the causes of this ice extent minimum within a historical perspective. It is found that even though the 2007 ice extent was strongly anomalous, the loss in total ice mass was not. Rather, the 2007 ice mass loss is largely consistent with a steady decrease in ice thickness that began in 1987. Since then, the simulated mean September ice thickness within the Arctic Ocean has declined from 3.7 to 2.6 m at a rate of −0.57 m decade−1. Both the area coverage of thin ice at the beginning of the melt season and the total volume of ice lost in the summer have been steadily increasing. The combined impact of these two trends caused a large reduction in the September mean ice concentration in the Arctic Ocean. This created conditions during the summer of 2007 that allowed persistent winds to push the remaining ice from the Pacific side to the Atlantic side of the basin and more than usual into the Greenland Sea. This exposed large areas of open water, resulting in the record ice extent anomaly.


2015 ◽  
Vol 143 (6) ◽  
pp. 2363-2385 ◽  
Author(s):  
Keith M. Hines ◽  
David H. Bromwich ◽  
Lesheng Bai ◽  
Cecilia M. Bitz ◽  
Jordan G. Powers ◽  
...  

Abstract The Polar Weather Research and Forecasting Model (Polar WRF), a polar-optimized version of the WRF Model, is developed and made available to the community by Ohio State University’s Polar Meteorology Group (PMG) as a code supplement to the WRF release from the National Center for Atmospheric Research (NCAR). While annual NCAR official releases contain polar modifications, the PMG provides very recent updates to users. PMG supplement versions up to WRF version 3.4 include modified Noah land surface model sea ice representation, allowing the specification of variable sea ice thickness and snow depth over sea ice rather than the default 3-m thickness and 0.05-m snow depth. Starting with WRF V3.5, these options are implemented by NCAR into the standard WRF release. Gridded distributions of Arctic ice thickness and snow depth over sea ice have recently become available. Their impacts are tested with PMG’s WRF V3.5-based Polar WRF in two case studies. First, 20-km-resolution model results for January 1998 are compared with observations during the Surface Heat Budget of the Arctic Ocean project. Polar WRF using analyzed thickness and snow depth fields appears to simulate January 1998 slightly better than WRF without polar settings selected. Sensitivity tests show that the simulated impacts of realistic variability in sea ice thickness and snow depth on near-surface temperature is several degrees. The 40-km resolution simulations of a second case study covering Europe and the Arctic Ocean demonstrate remote impacts of Arctic sea ice thickness on midlatitude synoptic meteorology that develop within 2 weeks during a winter 2012 blocking event.


2021 ◽  
Author(s):  
Sean Horvath ◽  
Linette Boisvert ◽  
Chelsea Parker ◽  
Melinda Webster ◽  
Patrick Taylor ◽  
...  

Abstract. Since the early 2000s, sea ice has experienced an increased rate of decline in thickness and extent and transitioned to a seasonal ice cover. This shift to thinner, seasonal ice in the 'New Arctic' is accompanied by a reshuffling of energy flows at the surface. Understanding the magnitude and nature of this reshuffling and the feedbacks therein remains limited. A novel database is presented that combines satellite observations, model output, and reanalysis data with daily sea ice parcel drift tracks produced in a Lagrangian framework. This dataset consists of daily time series of sea ice parcel locations, sea ice and snow conditions, and atmospheric states. Building on previous work, this dataset includes remotely sensed radiative and turbulent fluxes from which the surface energy budget can be calculated. Additionally, flags indicate when sea ice parcels travel within cyclones, recording distance and direction from the cyclone center. The database drift track was evaluated by comparison with sea ice mass balance buoys. Results show ice parcels generally remain within 100km of the corresponding buoy, with a mean distance of 82.6 km and median distance of 54 km. The sea ice mass balance buoys also provide recordings of sea ice thickness, snow depth, and air temperature and pressure which were compared to this database. Ice thickness and snow depth typically are less accurate than air temperature and pressure due to the high spatial variability of the former two quantities when compared to a point measurement. The correlations between the ice parcel and buoy data are high, which highlights the accuracy of this Lagrangian database in capturing the seasonal changes and evolution of sea ice. This database has multiple applications for the scientific community; it can be used to study the processes that influence individual sea ice parcel time series, or to explore generalized summary statistics and trends across the Arctic. Applications such as these may shed light on the atmosphere-snow-sea ice interactions in the changing Arctic environment.


2020 ◽  
Author(s):  
Alex Cabaj ◽  
Paul Kushner ◽  
Alek Petty ◽  
Stephen Howell ◽  
Christopher Fletcher

<p><span>Snow on Arctic sea ice plays multiple—and sometimes contrasting—roles in several feedbacks between sea ice and the global climate </span><span>system.</span><span> For example, the presence of snow on sea ice may mitigate sea ice melt by</span><span> increasing the sea ice albedo </span><span>and enhancing the ice-albedo feedback. Conversely, snow can</span><span> in</span><span>hibit sea ice growth by insulating the ice from the atmosphere during the </span><span>sea ice </span><span>growth season. </span><span>In addition to its contribution to sea ice feedbacks, snow on sea ice also poses a challenge for sea ice observations. </span><span>In particular, </span><span>snow </span><span>contributes to uncertaint</span><span>ies</span><span> in retrievals of sea ice thickness from satellite altimetry </span><span>measurements, </span><span>such as those from ICESat-2</span><span>. </span><span>Snow-on-sea-ice models can</span><span> produce basin-wide snow depth estimates, but these models require snowfall input from reanalysis products. In-situ snowfall measurements are a</span><span>bsent</span><span> over most of the Arctic Ocean, so it can be difficult to determine which reanalysis </span><span>snowfall</span><span> product is b</span><span>est</span><span> suited to be used as</span><span> input for a snow-on-sea-ice model.</span></p><p><span>In the absence of in-situ snowfall rate measurements, </span><span>measurements from </span><span>satellite instruments can be used to quantify snowfall over the Arctic Ocean</span><span>. </span><span>The CloudSat satellite, which is equipped with a 94 GHz Cloud Profiling Radar instrument, measures vertical radar reflectivity profiles from which snowfall rate</span><span>s</span><span> can be retrieved. </span> <span>T</span><span>his instrument</span><span> provides the most extensive high-latitude snowfall rate observation dataset currently available. </span><span>CloudSat’s near-polar orbit enables it to make measurements at latitudes up to 82°N, with a 16-day repeat cycle, </span><span>over the time period from 2006-2016.</span></p><p><span>We present a calibration of reanalysis snowfall to CloudSat observations over the Arctic Ocean, which we then apply to reanalysis snowfall input for the NASA Eulerian Snow On Sea Ice Model (NESOSIM). This calibration reduces the spread in snow depths produced by NESOSIM w</span><span>hen</span><span> different reanalysis inputs </span><span>are used</span><span>. </span><span>In light of this calibration, we revise the NESOSIM parametrizations of wind-driven snow processes, and we characterize the uncertainties in NESOSIM-generated snow depths resulting from uncertainties in snowfall input. </span><span>We then extend this analysis further to estimate the resulting uncertainties in sea ice thickness retrieved from ICESat-2 when snow depth estimates from NESOSIM are used as input for the retrieval.</span></p>


2014 ◽  
Vol 119 (1) ◽  
pp. 537-547 ◽  
Author(s):  
Ruibo Lei ◽  
Na Li ◽  
Petra Heil ◽  
Bin Cheng ◽  
Zhanhai Zhang ◽  
...  

2011 ◽  
Vol 52 (57) ◽  
pp. 369-376 ◽  
Author(s):  
Sebastian Gerland ◽  
Christian Haas

AbstractSnow depth is a key parameter for assessing the sea-ice mass budget in the Arctic and for the surface energy balance at the atmosphere–snow–ice–ocean interfaces. However, scientific expeditions to the high Arctic Ocean are rare, and for large parts of the year no snow and ice data are collected in situ in most regions. Therefore any additional in situ observations of snow depth are of interest to the scientific community. Arctic adventurers and tourists are among the most frequent visitors to the Arctic Ocean and North Pole. If properly trained and carefully adhering to standard protocols, they could collect valuable snow-depth data from large regions. Here we analyse such data from four Arctic basin ski traverses carried out between 1994 and 2007. Individual datasets show characteristic regional differences of snow thickness, which provide invaluable information for the validation of models and satellite data. the observations were made applying a continuously upgraded observation guideline scheme. Earlier observations were based on a relatively broad view of easily observable snow and ice parameters. Improvements included requirements of more detailed snow-thickness surveys in order to observe the spatial variability over varying sea-ice surfaces in a better way. Possibilities for, and limitations of, ice-thickness estimates and measurements are also discussed. Often, assessment of ice thickness is more problematic since measurements are either time-consuming or biased, meaning that possibilities for collecting large datasets are limited.


2015 ◽  
Vol 28 (10) ◽  
pp. 4027-4033 ◽  
Author(s):  
Doo-Sun R. Park ◽  
Sukyoung Lee ◽  
Steven B. Feldstein

Abstract Wintertime Arctic sea ice extent has been declining since the late twentieth century, particularly over the Atlantic sector that encompasses the Barents–Kara Seas and Baffin Bay. This sea ice decline is attributable to various Arctic environmental changes, such as enhanced downward infrared (IR) radiation, preseason sea ice reduction, enhanced inflow of warm Atlantic water into the Arctic Ocean, and sea ice export. However, their relative contributions are uncertain. Utilizing ERA-Interim and satellite-based data, it is shown here that a positive trend of downward IR radiation accounts for nearly half of the sea ice concentration (SIC) decline during the 1979–2011 winter over the Atlantic sector. Furthermore, the study shows that the Arctic downward IR radiation increase is driven by horizontal atmospheric water flux and warm air advection into the Arctic, not by evaporation from the Arctic Ocean. These findings suggest that most of the winter SIC trends can be attributed to changes in the large-scale atmospheric circulations.


2010 ◽  
Vol 11 (1) ◽  
pp. 199-210 ◽  
Author(s):  
Yi-Ching Chung ◽  
Stéphane Bélair ◽  
Jocelyn Mailhot

Abstract The new Recherche Prévision Numérique (NEW-RPN) model, a coupled system including a multilayer snow thermal model (SNTHERM) and the sea ice model currently used in the Meteorological Service of Canada (MSC) operational forecasting system, was evaluated in a one-dimensional mode using meteorological observations from the Surface Heat Budget of the Arctic Ocean (SHEBA)’s Pittsburgh site in the Arctic Ocean collected during 1997/98. Two parameters simulated by NEW-RPN (i.e., snow depth and ice thickness) are compared with SHEBA’s observations and with simulations from RPN, MSC’s current coupled system (the same sea ice model and a single-layer snow model). Results show that NEW-RPN exhibits better agreement for the timing of snow depletion and for ice thickness. The profiles of snow thermal conductivity in NEW-RPN show considerable variability across the snow layers, but the mean value (0.39 W m−1 K−1) is within the range of reported observations for SHEBA. This value is larger than 0.31 W m−1 K−1, which is commonly used in single-layer snow models. Of particular interest in NEW-RPN’s simulation is the strong temperature stratification of the snowpack, which indicates that a multilayer snow model is needed in the SHEBA scenario. A sensitivity analysis indicates that snow compaction is also a crucial process for a realistic representation of the snowpack within the snow/sea ice system. NEW-RPN’s overestimation of snow depth may be related to other processes not included in the study, such as small-scale horizontal variability of snow depth and blowing snow processes.


1984 ◽  
Vol 5 ◽  
pp. 61-68 ◽  
Author(s):  
T. Holt ◽  
P. M. Kelly ◽  
B. S. G. Cherry

Soviet plans to divert water from rivers flowing into the Arctic Ocean have led to research into the impact of a reduction in discharge on Arctic sea ice. We consider the mechanisms by which discharge reductions might affect sea-ice cover and then test various hypotheses related to these mechanisms. We find several large areas over which sea-ice concentration correlates significantly with variations in river discharge, supporting two particular hypotheses. The first hypothesis concerns the area where the initial impacts are likely to which is the Kara Sea. Reduced riverflow is associated occur, with decreased sea-ice concentration in October, at the time of ice formation. This is believed to be the result of decreased freshening of the surface layer. The second hypothesis concerns possible effects on the large-scale current system of the Arctic Ocean and, in particular, on the inflow of Atlantic and Pacific water. These effects occur as a result of changes in the strength of northward-flowing gradient currents associated with variations in river discharge. Although it is still not certain that substantial transfers of riverflow will take place, it is concluded that the possibility of significant cryospheric effects and, hence, large-scale climate impact should not be neglected.


Sign in / Sign up

Export Citation Format

Share Document