scholarly journals A Multiscale Variational Data Assimilation Scheme: Formulation and Illustration

2015 ◽  
Vol 143 (9) ◽  
pp. 3804-3822 ◽  
Author(s):  
Zhijin Li ◽  
James C. McWilliams ◽  
Kayo Ide ◽  
John D. Farrara

Abstract A multiscale data assimilation (MS-DA) scheme is formulated for fine-resolution models. A decomposition of the cost function is derived for a set of distinct spatial scales. The decomposed cost function allows for the background error covariance to be estimated separately for the distinct spatial scales, and multi-decorrelation scales to be explicitly incorporated in the background error covariance. MS-DA minimizes the partitioned cost functions sequentially from large to small scales. The multi-decorrelation length scale background error covariance enhances the spreading of sparse observations and prevents fine structures in high-resolution observations from being overly smoothed. The decomposition of the cost function also provides an avenue for mitigating the effects of scale aliasing and representativeness errors that inherently exist in a multiscale system, thus further improving the effectiveness of the assimilation of high-resolution observations. A set of one-dimensional experiments is performed to examine the properties of the MS-DA scheme. Emphasis is placed on the assimilation of patchy high-resolution observations representing radar and satellite measurements, alongside sparse observations representing those from conventional in situ platforms. The results illustrate how MS-DA improves the effectiveness of the assimilation of both these types of observations simultaneously.

2018 ◽  
Vol 146 (5) ◽  
pp. 1367-1381 ◽  
Author(s):  
Jean-François Caron ◽  
Mark Buehner

Abstract Scale-dependent localization (SDL) consists of applying the appropriate (i.e., different) amount of localization to different ranges of background error covariance spatial scales while simultaneously assimilating all of the available observations. The SDL method proposed by Buehner and Shlyaeva for ensemble–variational (EnVar) data assimilation was tested in a 3D-EnVar version of the Canadian operational global data assimilation system. It is shown that a horizontal-scale-dependent horizontal localization leads to implicit vertical-level-dependent, variable-dependent, and location-dependent horizontal localization. The results from data assimilation cycles show that horizontal-scale-dependent horizontal covariance localization is able to improve the forecasts up to day 5 in the Northern Hemisphere extratropical summer period and up to day 7 in the Southern Hemisphere extratropical winter period. In the tropics, use of SDL results in improvements similar to what can be obtained by increasing the uniform amount of spatial localization. An investigation of the dynamical balance in the resulting analysis increments demonstrates that SDL does not further harm the balance between the mass and the rotational wind fields, as compared to the traditional localization approach. Potential future applications for the SDL method are also discussed.


2015 ◽  
Vol 143 (10) ◽  
pp. 3925-3930 ◽  
Author(s):  
Benjamin Ménétrier ◽  
Thomas Auligné

Abstract The control variable transform (CVT) is a keystone of variational data assimilation. In publications using such a technique, the background term of the transformed cost function is defined as a canonical inner product of the transformed control variable with itself. However, it is shown in this paper that this practical definition of the cost function is not correct if the CVT uses a square root of the background error covariance matrix that is not square. Fortunately, it is then shown that there is a manifold of the control space for which this flaw has no impact, and that most minimizers used in practice precisely work in this manifold. It is also shown that both correct and practical transformed cost functions have the same minimum. This explains more rigorously why the CVT is working in practice. The case of a singular is finally detailed, showing that the practical cost function still reaches the best linear unbiased estimate (BLUE).


2021 ◽  
Author(s):  
Zofia Stanley ◽  
Ian Grooms ◽  
William Kleiber

Abstract. Localization is widely used in data assimilation schemes to mitigate the impact of sampling errors on ensemble-derived background error covariance matrices. Strongly coupled data assimilation allows observations in one component of a coupled model to directly impact another component through inclusion of cross-domain terms in the background error covariance matrix. When different components have disparate dominant spatial scales, localization between model domains must properly account for the multiple length scales at play. In this work we develop two new multivariate localization functions, one of which is a multivariate extension of the fifth-order piecewise rational Gaspari-Cohn localization function; the within-component localization functions are standard Gaspari-Cohn with different localization radii while the cross-localization function is newly constructed. The functions produce non-negative definite localization matrices, which are suitable for use in variational data assimilation schemes. We compare the performance of our two new multivariate localization functions to two other multivariate localization functions and to the univariate analogs of all four functions in a simple experiment with the bivariate Lorenz '96 system. In our experiment the multivariate Gaspari-Cohn function leads to better performance than any of the other localization functions.


2021 ◽  
Vol 28 (4) ◽  
pp. 565-583
Author(s):  
Zofia Stanley ◽  
Ian Grooms ◽  
William Kleiber

Abstract. Localization is widely used in data assimilation schemes to mitigate the impact of sampling errors on ensemble-derived background error covariance matrices. Strongly coupled data assimilation allows observations in one component of a coupled model to directly impact another component through the inclusion of cross-domain terms in the background error covariance matrix. When different components have disparate dominant spatial scales, localization between model domains must properly account for the multiple length scales at play. In this work, we develop two new multivariate localization functions, one of which is a multivariate extension of the fifth-order piecewise rational Gaspari–Cohn localization function; the within-component localization functions are standard Gaspari–Cohn with different localization radii, while the cross-localization function is newly constructed. The functions produce positive semidefinite localization matrices which are suitable for use in both Kalman filters and variational data assimilation schemes. We compare the performance of our two new multivariate localization functions to two other multivariate localization functions and to the univariate and weakly coupled analogs of all four functions in a simple experiment with the bivariate Lorenz 96 system. In our experiments, the multivariate Gaspari–Cohn function leads to better performance than any of the other multivariate localization functions.


2005 ◽  
Vol 133 (6) ◽  
pp. 1710-1726 ◽  
Author(s):  
Milija Zupanski

Abstract A new ensemble-based data assimilation method, named the maximum likelihood ensemble filter (MLEF), is presented. The analysis solution maximizes the likelihood of the posterior probability distribution, obtained by minimization of a cost function that depends on a general nonlinear observation operator. The MLEF belongs to the class of deterministic ensemble filters, since no perturbed observations are employed. As in variational and ensemble data assimilation methods, the cost function is derived using a Gaussian probability density function framework. Like other ensemble data assimilation algorithms, the MLEF produces an estimate of the analysis uncertainty (e.g., analysis error covariance). In addition to the common use of ensembles in calculation of the forecast error covariance, the ensembles in MLEF are exploited to efficiently calculate the Hessian preconditioning and the gradient of the cost function. A sufficient number of iterative minimization steps is 2–3, because of superior Hessian preconditioning. The MLEF method is well suited for use with highly nonlinear observation operators, for a small additional computational cost of minimization. The consistent treatment of nonlinear observation operators through optimization is an advantage of the MLEF over other ensemble data assimilation algorithms. The cost of MLEF is comparable to the cost of existing ensemble Kalman filter algorithms. The method is directly applicable to most complex forecast models and observation operators. In this paper, the MLEF method is applied to data assimilation with the one-dimensional Korteweg–de Vries–Burgers equation. The tested observation operator is quadratic, in order to make the assimilation problem more challenging. The results illustrate the stability of the MLEF performance, as well as the benefit of the cost function minimization. The improvement is noted in terms of the rms error, as well as the analysis error covariance. The statistics of innovation vectors (observation minus forecast) also indicate a stable performance of the MLEF algorithm. Additional experiments suggest the amplified benefit of targeted observations in ensemble data assimilation.


2018 ◽  
Vol 33 (2) ◽  
pp. 561-582 ◽  
Author(s):  
Kuan-Jen Lin ◽  
Shu-Chih Yang ◽  
Shuyi S. Chen

Abstract Ensemble-based data assimilation (EDA) has been used for tropical cyclone (TC) analysis and prediction with some success. However, the TC position spread determines the structure of the TC-related background error covariance and affects the performance of EDA. With an idealized experiment and a real TC case study, it is demonstrated that observations in the core region cannot be optimally assimilated when the TC position spread is large. To minimize the negative impact from large position uncertainty, a TC-centered EDA approach is implemented in the Weather Research and Forecasting (WRF) Model–local ensemble transform Kalman filter (WRF-LETKF) assimilation system. The impact of TC-centered EDA on TC analysis and prediction of Typhoon Fanapi (2010) is evaluated. Using WRF Model nested grids with 4-km grid spacing in the innermost domain, the focus is on EDA using dropsonde data from the Impact of Typhoons on the Ocean in the Pacific field campaign. The results show that the TC structure in the background mean state is improved and that unrealistically large ensemble spread can be alleviated. The characteristic horizontal scale in the background error covariance is smaller and narrower compared to those derived from the conventional EDA approach. Storm-scale corrections are improved using dropsonde data, which is more favorable for TC development. The analysis using the TC-centered EDA is in better agreement with independent observations. The improved analysis ameliorates model shock and improves the track forecast during the first 12 h and landfall at 72 h. The impact on intensity prediction is mixed with a better minimum sea level pressure and overestimated peak winds.


2016 ◽  
Vol 144 (2) ◽  
pp. 591-606 ◽  
Author(s):  
Chengsi Liu ◽  
Ming Xue

Abstract Ensemble–variational data assimilation algorithms that can incorporate the time dimension (four-dimensional or 4D) and combine static and ensemble-derived background error covariances (hybrid) are formulated in general forms based on the extended control variable and the observation-space-perturbation approaches. The properties and relationships of these algorithms and their approximated formulations are discussed. The main algorithms discussed include the following: 1) the standard ensemble 4DVar (En4DVar) algorithm incorporating ensemble-derived background error covariance through the extended control variable approach, 2) the 4DEnVar neglecting the time propagation of the extended control variable (4DEnVar-NPC), 3) the 4D ensemble–variational algorithm based on observation space perturbation (4DEnVar), and 4) the 4DEnVar with no propagation of covariance localization (4DEnVar-NPL). Without the static background error covariance term, none of the algorithms requires the adjoint model except for En4DVar. Costly applications of the tangent linear model to localized ensemble perturbations can be avoided by making the NPC and NPL approximations. It is proven that En4DVar and 4DEnVar are mathematically equivalent, while 4DEnVar-NPC and 4DEnVar-NPL are mathematically equivalent. Such equivalences are also demonstrated by single-observation assimilation experiments with a 1D linear advection model. The effects of the non-flow-following or stationary localization approximations are also examined through the experiments. All of the above algorithms can include the static background error covariance term to establish a hybrid formulation. When the static term is included, all algorithms will require a tangent linear model and an adjoint model. The first guess at appropriate time (FGAT) approximation is proposed to avoid the tangent linear and adjoint models. Computational costs of the algorithms are also discussed.


Sign in / Sign up

Export Citation Format

Share Document