scholarly journals Adaptive Kalman Filtering for Postprocessing Ensemble Numerical Weather Predictions

2017 ◽  
Vol 145 (12) ◽  
pp. 4837-4854 ◽  
Author(s):  
Anna Pelosi ◽  
Hanoi Medina ◽  
Joris Van den Bergh ◽  
Stéphane Vannitsem ◽  
Giovanni Battista Chirico

Forecasts from numerical weather prediction models suffer from systematic and nonsystematic errors, which originate from various sources such as subgrid-scale variability affecting large scales. Statistical postprocessing techniques can partly remove such errors. Adaptive MOS techniques based on Kalman filters (here called AMOS), are used to sequentially postprocess the forecasts, by continuously updating the correction parameters as new ground observations become available. These techniques, originally proposed for deterministic forecasts, are valuable when long training datasets do not exist. Here, a new adaptive postprocessing technique for ensemble predictions (called AEMOS) is introduced. The proposed method implements a Kalman filtering approach that fully exploits the information content of the ensemble for updating the parameters of the postprocessing equation. A verification study for the region of Campania in southern Italy is performed. Two years (2014–15) of daily meteorological observations of 10-m wind speed and 2-m temperature from 18 ground-based automatic weather stations are used, comparing them with the corresponding COSMO-LEPS ensemble forecasts. It is shown that the proposed adaptive method outperforms the AMOS method, while it shows comparable results to the member-by-member batch postprocessing approach.

Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 89
Author(s):  
Harel. B. Muskatel ◽  
Ulrich Blahak ◽  
Pavel Khain ◽  
Yoav Levi ◽  
Qiang Fu

Parametrization of radiation transfer through clouds is an important factor in the ability of Numerical Weather Prediction models to correctly describe the weather evolution. Here we present a practical parameterization of both liquid droplets and ice optical properties in the longwave and shortwave radiation. An advanced spectral averaging method is used to calculate the extinction coefficient, single scattering albedo, forward scattered fraction and asymmetry factor (bext, v, f, g), taking into account the nonlinear effects of light attenuation in the spectral averaging. An ensemble of particle size distributions was used for the ice optical properties calculations, which enables the effective size range to be extended up to 570 μm and thus be applicable for larger hydrometeor categories such as snow, graupel, and rain. The new parameterization was applied both in the COSMO limited-area model and in ICON global model and was evaluated by using the COSMO model to simulate stratiform ice and water clouds. Numerical weather prediction models usually determine the asymmetry factor as a function of effective size. For the first time in an operational numerical weather prediction (NWP) model, the asymmetry factor is parametrized as a function of aspect ratio. The method is generalized and is available on-line to be readily applied to any optical properties dataset and spectral intervals of a wide range of radiation transfer models and applications.


2005 ◽  
Vol 32 (14-15) ◽  
pp. 1841-1863 ◽  
Author(s):  
Mark S. Roulston ◽  
Jerome Ellepola ◽  
Jost von Hardenberg ◽  
Leonard A. Smith

2017 ◽  
Vol 145 (12) ◽  
pp. 4911-4936 ◽  
Author(s):  
Jonathan Labriola ◽  
Nathan Snook ◽  
Youngsun Jung ◽  
Bryan Putnam ◽  
Ming Xue

Explicit prediction of hail using numerical weather prediction models remains a significant challenge; microphysical uncertainties and errors are a significant contributor to this challenge. This study assesses the ability of storm-scale ensemble forecasts using single-moment Lin or double-moment Milbrandt and Yau microphysical schemes in predicting hail during a severe weather event over south-central Oklahoma on 10 May 2010. Radar and surface observations are assimilated using an ensemble Kalman filter (EnKF) at 5-min intervals. Three sets of ensemble forecasts, launched at 15-min intervals, are then produced from EnKF analyses at times ranging from 30 min prior to the first observed hail to the time of the first observed hail. Forty ensemble members are run at 500-m horizontal grid spacing in both EnKF assimilation cycles and subsequent forecasts. Hail forecasts are verified using radar-derived products including information from single- and dual-polarization radar data: maximum estimated size of hail (MESH), hydrometeor classification algorithm (HCA) output, and hail size discrimination algorithm (HSDA) output. Resulting hail forecasts show at most marginal skill, with the level of skill dependent on the forecast initialization time and microphysical scheme used. Forecasts using the double-moment scheme predict many small hailstones aloft, while the single-moment members predict larger hailstones. Near the surface, double-moment members predict larger hailstone sizes than their single-member counterparts. Hail in the forecasts is found to melt too quickly near the surface for members using either of the microphysics schemes examined. Analysis of microphysical budgets in both schemes indicates that both schemes suboptimally represent hail processes, adversely impacting the skill of surface hail forecasts.


2021 ◽  
Author(s):  
Richard Maier ◽  
Bernhard Mayer ◽  
Claudia Emde ◽  
Aiko Voigt

<div> <div> <div> <div> <p>The increasing resolution of numerical weather prediction models makes 3D radiative effects more and more important. These effects are usually neglected by the simple 1D independent column approximations used in most of the current models. On top of that, these 1D radiative transfer solvers are also called far less often than the model’s dynamical core.</p> <p>To address these issues, we present a new „dynamic“ approach of solving 3D radiative transfer. Building upon the existing TenStream solver (Jakub and Mayer, 2015), radiation in this 3D model is not solved completely in each radiation time step, but is rather only transported to adjacent grid boxes. For every grid box, outgoing fluxes are then calculated from the incoming fluxes from the neighboring grid cells of the previous time step. This allows to reduce the computational cost of 3D radiative transfer models to that of current 1D solvers.</p> <p>Here, we show first results obtained with this new solver with a special emphasis on heating rates. Furthermore, we demonstrate issues related to the dynamical treatment of radiation as well as possible solutions to these problems.</p> <p>In the future, the speed of this newly developed 3D dynamic TenStream solver will be further increased by reducing the number of spectral bands used in the radiative transfer calculations with the aim to get a 3D solver that can be called even more frequently than the 1D two-stream solvers used nowadays.</p> <p>Reference:<br><span>Jakub, F. and Mayer, B. (2015), A three-dimensional parallel radiative transfer model for atmospheric heating rates for use in cloud resolving models—The TenStream solver, Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 163, 2015, Pages 63-71, ISSN 0022-4073, . </span></p> </div> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document