scholarly journals General Features of Extreme Rainfall Events Produced by MCSs over East China during 2016–17

2019 ◽  
Vol 147 (7) ◽  
pp. 2693-2714 ◽  
Author(s):  
Liu Zhang ◽  
Jinzhong Min ◽  
Xiaoran Zhuang ◽  
Russ S. Schumacher

Abstract This study investigated the characteristics of extreme precipitation events associated with mesoscale convective systems (MCSs) in East China (the area east of 96°E) during 2016–17. Over the entire region, 204 events were first identified and classified into synoptic, tropical, MCS, small-scale-storm (SSS), and unclassified types. For 73 MCS-type events, further division and analysis were conducted according to the organizational modes. Results show that MCS-related events occurred most frequently near southern Fujian Province and from April to October with a peak in July. The area of occurrence shifted from the south in spring to the north in summer before going back to the south in autumn. The events occurred most commonly from afternoon to early evening, matured around late afternoon, and ended before dark. Among MCS subcategories, the longest average duration was seen in the multiple-MCS cases. Of the 15 selected multiple-MCS events, 11 were defined as early-maturing type with peak rainfall occurrence before the midpoint of duration while the others were late maturing. Although multiple-MCS events were accompanied by a southwest low-level jet, strong warm-air advection, and convective instability, early-maturing cases had stronger synoptic-scale ascent, moister environments, and smaller surface-based convective available potential energy (SBCAPE) and convection inhibition (SBCIN) at the most extreme rainfall-occurrence point. Compared to the MCS type within all extreme precipitation events over the United States, the percentage was lower in China. However, the events in China exhibit more pronounced seasonal cycle.

Author(s):  
Yong Tang ◽  
Anning Huang ◽  
Peili Wu ◽  
Danqing Huang ◽  
Daokai Xue ◽  
...  

2021 ◽  
Author(s):  
Renaud Falga ◽  
Chien Wang

<p>The South Asian monsoon system impacts the livelihoods of over a billion people. While the overall monsoon rainfall is believed to have decreased during the 20<sup>th</sup> century, there is a good agreement that the extreme precipitation events have been rising in some parts of India. As an important part of the Indian population is dependent on rainfed agriculture, such a rise in extremes, along with resulting flood events, can be all the more problematic. Although studies tend to link this rise in extreme events with anthropogenic forcing, some uncertainties remain on the exact causes. In order to examine the correlation between anthropogenic forcings and the different trends in extreme events, we have analyzed the high-resolution daily rainfall data in the past century delivered by the Indian Meteorological Department alongside several other economic and ecological estimates. The results from this analysis will be presented in detail.</p>


2019 ◽  
Vol 147 (4) ◽  
pp. 1415-1428 ◽  
Author(s):  
Imme Benedict ◽  
Karianne Ødemark ◽  
Thomas Nipen ◽  
Richard Moore

Abstract A climatology of extreme cold season precipitation events in Norway from 1979 to 2014 is presented, based on the 99th percentile of the 24-h accumulated precipitation. Three regions, termed north, west, and south are identified, each exhibiting a unique seasonal distribution. There is a proclivity for events to occur during the positive phase of the NAO. The result is statistically significant at the 95th percentile for the north and west regions. An overarching hypothesis of this work is that anomalous moisture flux, or so-called atmospheric rivers (ARs), are integral to extreme precipitation events during the Norwegian cold season. An objective analysis of the integrated vapor transport illustrates that more than 85% of the events are associated with ARs. An empirical orthogonal function and fuzzy cluster technique is used to identify the large-scale weather patterns conducive to the moisture flux and extreme precipitation. Five days before the event and for each of the three regions, two patterns are found. The first represents an intense, southward-shifted jet with a southwest–northeast orientation. The second identifies a weak, northward-shifted, zonal jet. As the event approaches, regional differences become more apparent. The distinctive flow pattern conducive to orographically enhanced precipitation emerges in the two clusters for each region. For the north and west regions, this entails primarily zonal flow impinging upon the south–north-orientated topography, the difference being the latitude of the strong flow. In contrast, the south region exhibits a significant southerly component to the flow.


2016 ◽  
Vol 17 (2) ◽  
pp. 693-711 ◽  
Author(s):  
Hamed Ashouri ◽  
Soroosh Sorooshian ◽  
Kuo-Lin Hsu ◽  
Michael G. Bosilovich ◽  
Jaechoul Lee ◽  
...  

Abstract This study evaluates the performance of NASA’s Modern-Era Retrospective Analysis for Research and Applications (MERRA) precipitation product in reproducing the trend and distribution of extreme precipitation events. Utilizing the extreme value theory, time-invariant and time-variant extreme value distributions are developed to model the trends and changes in the patterns of extreme precipitation events over the contiguous United States during 1979–2010. The Climate Prediction Center (CPC) U.S. Unified gridded observation data are used as the observational dataset. The CPC analysis shows that the eastern and western parts of the United States are experiencing positive and negative trends in annual maxima, respectively. The continental-scale patterns of change found in MERRA seem to reasonably mirror the observed patterns of change found in CPC. This is not previously expected, given the difficulty in constraining precipitation in reanalysis products. MERRA tends to overestimate the frequency at which the 99th percentile of precipitation is exceeded because this threshold tends to be lower in MERRA, making it easier to be exceeded. This feature is dominant during the summer months. MERRA tends to reproduce spatial patterns of the scale and location parameters of the generalized extreme value and generalized Pareto distributions. However, MERRA underestimates these parameters, particularly over the Gulf Coast states, leading to lower magnitudes in extreme precipitation events. Two issues in MERRA are identified: 1) MERRA shows a spurious negative trend in Nebraska and Kansas, which is most likely related to the changes in the satellite observing system over time that has apparently affected the water cycle in the central United States, and 2) the patterns of positive trend over the Gulf Coast states and along the East Coast seem to be correlated with the tropical cyclones in these regions. The analysis of the trends in the seasonal precipitation extremes indicates that the hurricane and winter seasons are contributing the most to these trend patterns in the southeastern United States. In addition, the increasing annual trend simulated by MERRA in the Gulf Coast region is due to an incorrect trend in winter precipitation extremes.


2014 ◽  
Vol 53 (2) ◽  
pp. 217-233 ◽  
Author(s):  
Diandong Ren ◽  
Lance M. Leslie ◽  
Mervyn J. Lynch

AbstractChanges in storm-triggered landslide activity for Southern California in a future warming climate are estimated using an advanced, fully three-dimensional, process-based landslide model, the Scalable and Extensible Geofluid Modeling System for landslides (SEGMENT-Landslide). SEGMENT-Landslide is driven by extreme rainfall projections from the Geophysical Fluid Dynamics Laboratory High Resolution Atmospheric Model (GFDL-HIRAM). Landslide changes are derived from GFDL-HIRAM forcing for two periods: 1) the twentieth century (CNTRL) and 2) the twenty-first century under the moderate Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios A1B enhanced greenhouse gas emissions scenario (EGHG). Here, differences are calculated in landslide frequency and magnitude between the CNTRL and EGHG projections; kernel density estimation (KDE) is used to determine differences in projected landslide locations. This study also reveals that extreme precipitation events in Southern California are strongly correlated with several climate drivers and that GFDL-HIRAM simulates well the southern (relative to Aleutian synoptic systems) storm tracks in El Niño years and the rare (~27-yr recurrence period) hurricane-landfalling events. GFDL-HIRAM therefore can provide satisfactory projections of the geographical distribution, seasonal cycle, and interannual variability of future extreme precipitation events (>50 mm) that have possible landslide consequences for Southern California. Although relatively infrequent, extreme precipitation events contribute most of the annual total precipitation in Southern California. Two findings of this study have major implications for Southern California. First is a possible increase in landslide frequency and areal distribution during the twenty-first century. Second, the KDE reveals three clusters in both the CNTRL and EGHG model mean scarp positions, with a future eastward (inland) shift of ~0.5° and a northward shift of ~1°. These findings suggest that previously stable areas might become susceptible to storm-triggered landslides in the twenty-first century.


2010 ◽  
Vol 11 (3) ◽  
pp. 770-780 ◽  
Author(s):  
Ingo Schlüter ◽  
Gerd Schädler

Abstract Extreme flood events are caused by long-lasting and/or intensive precipitation. The detailed knowledge of the distribution, intensity, and spatiotemporal variability of precipitation is, therefore, a prerequisite for hydrological flood modeling and flood risk management. For hydrological modeling, temporal and spatial high-resolution precipitation data can be provided by meteorological models. This study deals with the question of how small changes in the synoptic situation affect the characteristics of extreme forecasts. For that purpose, two historic extreme precipitation events were hindcasted using the Consortium for Small Scale Modeling (COSMO) model of the German Weather Service (DWD) with different grid resolutions (28, 7, and 2.8 km), where the domains with finer resolutions were nested into the ones with coarser resolution. The results show that the model is capable of simulating such extreme precipitation events in a satisfactory way. To assess the impact of small changes in the synoptic situations on extreme precipitation events, the large-scale atmospheric fields were shifted to north, south, east, and west with respect to the orography by about 28 and 56 km, respectively, in one series of runs while in another series, the relative humidity and temperature were increased to modify the amount of precipitable water. Both series were performed for the Elbe flood events in August 2002 and January 2003, corresponding to two very different synoptic situations. The results show that the modeled precipitation can be quite sensitive to small changes of the synoptic situation with changes in the order of 20% for the maximum daily precipitation and that the types of synoptic situations play an important role. While van Bebber weather conditions, of Mediterranean origin, were quite sensitive to modifications, more homogeneous weather patterns were less sensitive.


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 379
Author(s):  
Jun Sun ◽  
Xiuping Yao ◽  
Guowei Deng ◽  
Yi Liu

In this research, the observation datasets from 106 gauge stations over the central and eastern areas of the Tibetan Plateau (TP) and the ERA (ECMWF Re-Analysis)-Interim reanalysis datasets in the summers of 1981–2016 are used to study the characteristics and synoptic patterns of extreme precipitation events over the TP. By using a modern statistical method, the abnormal circulation characteristics at high, middle, and low latitudes in the Northern Hemisphere during extreme precipitation events over the central-eastern Tibetan Plateau are discussed, and the physical mechanisms related to the extreme precipitation events are investigated. The results show that the largest amount of extreme precipitation is found in the southern and eastern areas of the TP, where the frequency of daily extreme rainfall events (exceeding 25 mm) and the frequency of all extreme precipitation events both show obvious quasi-biweekly oscillation. When the daily extreme precipitation event threshold over the TP is met and more than 5 stations show daily extreme precipitation at the same time, with at least three of them being adjacent to each other, this is determined as a regional extreme precipitation event. As such, 33 regional daily extreme precipitation events occur during the summer periods of 1981–2016. According to the influence system, the 33 regional extreme precipitation events can be divided into three types, namely the plateau trough type, the plateau shear line type, and the plateau vortex type. For the plateau trough type, the South Asian high is anomalously strong at 100 hPa. For the other two types, the South Asian high is slightly weaker than usual. For the plateau shear line type, the development of the dynamic disturbance is the strongest, reaching 200 hPa. In the plateau trough type and plateau vortex type, the water vapor is transported by the westerly belt and the southwesterly flow from the Bay of Bengal.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Michele E. Morgado ◽  
Chengsheng Jiang ◽  
Jordan Zambrana ◽  
Crystal Romeo Upperman ◽  
Clifford Mitchell ◽  
...  

Abstract Background Infections with nontyphoidal Salmonella cause an estimated 19,336 hospitalizations each year in the United States. Sources of infection can vary by state and include animal and plant-based foods, as well as environmental reservoirs. Several studies have recognized the importance of increased ambient temperature and precipitation in the spread and persistence of Salmonella in soil and food. However, the impact of extreme weather events on Salmonella infection rates among the most prevalent serovars, has not been fully evaluated across distinct U.S. regions. Methods To address this knowledge gap, we obtained Salmonella case data for S. Enteriditis, S. Typhimurium, S. Newport, and S. Javiana (2004-2014; n = 32,951) from the Foodborne Diseases Active Surveillance Network (FoodNet), and weather data from the National Climatic Data Center (1960-2014). Extreme heat and precipitation events for the study period (2004-2014) were identified using location and calendar day specific 95th percentile thresholds derived using a 30-year baseline (1960-1989). Negative binomial generalized estimating equations were used to evaluate the association between exposure to extreme events and salmonellosis rates. Results We observed that extreme heat exposure was associated with increased rates of infection with S. Newport in Maryland (Incidence Rate Ratio (IRR): 1.07, 95% Confidence Interval (CI): 1.01, 1.14), and Tennessee (IRR: 1.06, 95% CI: 1.04, 1.09), both FoodNet sites with high densities of animal feeding operations (e.g., broiler chickens and cattle). Extreme precipitation events were also associated with increased rates of S. Javiana infections, by 22% in Connecticut (IRR: 1.22, 95% CI: 1.10, 1.35) and by 5% in Georgia (IRR: 1.05, 95% CI: 1.01, 1.08), respectively. In addition, there was an 11% (IRR: 1.11, 95% CI: 1.04-1.18) increased rate of S. Newport infections in Maryland associated with extreme precipitation events. Conclusions Overall, our study suggests a stronger association between extreme precipitation events, compared to extreme heat, and salmonellosis across multiple U.S. regions. In addition, the rates of infection with Salmonella serovars that persist in environmental or plant-based reservoirs, such as S. Javiana and S. Newport, appear to be of particular significance regarding increased heat and rainfall events.


Sign in / Sign up

Export Citation Format

Share Document