Drivers of summer extreme precipitation events over East China

Author(s):  
Yong Tang ◽  
Anning Huang ◽  
Peili Wu ◽  
Danqing Huang ◽  
Daokai Xue ◽  
...  
2016 ◽  
Vol 59 (9) ◽  
pp. 1854-1872 ◽  
Author(s):  
Yang Zhao ◽  
XiangDe Xu ◽  
TianLiang Zhao ◽  
HongXiong Xu ◽  
Fei Mao ◽  
...  

2021 ◽  
pp. 1-44
Author(s):  
Ryosuke Shibuya ◽  
Yukari Takayabu ◽  
Hirotaka Kamahori

AbstractThis study examines disastrous historical precipitation cases that generate extreme precipitation simultaneously over a wide area in Japan (as in July 2018), defined as widespread extreme precipitation events. A statistically significant large-scale environment conducive for widespread extreme precipitation events over western Japan is investigated based on composite analysis. During a widespread precipitation event, a zonally elongated positive anomaly of the column-integrated water vapor extends from East China to western Japan. In the lower troposphere, a dipole of a geopotential height anomaly exists with positive and negative values at the east and west of the precipitation area, respectively. It is found that the negative geopotential anomaly is enhanced over East China at two days before the event and moves toward the precipitating area mainly due to the PV production term by diabatic heating, in analogy of a diabatic Rossby wave. The temporal evolution of the dynamical forced vertical velocity is well in phase with that the PV production term, inferring the importance of the coupling between the dynamical forced motion and diabatic heating. This result provides a physical understanding of the reason why both the background moisture and the baroclinicity are essential in the composited atmospheric fields and another view to the importance of the feedback parameter between the dynamical motion and diabatic heating.


2019 ◽  
Vol 147 (7) ◽  
pp. 2693-2714 ◽  
Author(s):  
Liu Zhang ◽  
Jinzhong Min ◽  
Xiaoran Zhuang ◽  
Russ S. Schumacher

Abstract This study investigated the characteristics of extreme precipitation events associated with mesoscale convective systems (MCSs) in East China (the area east of 96°E) during 2016–17. Over the entire region, 204 events were first identified and classified into synoptic, tropical, MCS, small-scale-storm (SSS), and unclassified types. For 73 MCS-type events, further division and analysis were conducted according to the organizational modes. Results show that MCS-related events occurred most frequently near southern Fujian Province and from April to October with a peak in July. The area of occurrence shifted from the south in spring to the north in summer before going back to the south in autumn. The events occurred most commonly from afternoon to early evening, matured around late afternoon, and ended before dark. Among MCS subcategories, the longest average duration was seen in the multiple-MCS cases. Of the 15 selected multiple-MCS events, 11 were defined as early-maturing type with peak rainfall occurrence before the midpoint of duration while the others were late maturing. Although multiple-MCS events were accompanied by a southwest low-level jet, strong warm-air advection, and convective instability, early-maturing cases had stronger synoptic-scale ascent, moister environments, and smaller surface-based convective available potential energy (SBCAPE) and convection inhibition (SBCIN) at the most extreme rainfall-occurrence point. Compared to the MCS type within all extreme precipitation events over the United States, the percentage was lower in China. However, the events in China exhibit more pronounced seasonal cycle.


Ecology ◽  
2021 ◽  
Author(s):  
Alison K. Post ◽  
Kristin P. Davis ◽  
Jillian LaRoe ◽  
David L. Hoover ◽  
Alan K. Knapp

Sign in / Sign up

Export Citation Format

Share Document