scholarly journals Capabilities and Limitations of Convection-Permitting WRF Simulations of Lake-Effect Systems over the Great Salt Lake

2015 ◽  
Vol 30 (6) ◽  
pp. 1711-1731 ◽  
Author(s):  
John D. McMillen ◽  
W. James Steenburgh

Abstract Although previous studies suggest that the Weather Research and Forecasting (WRF) Model can produce physically realistic banded Great Salt Lake–effect (GSLE) precipitation features, the accuracy and reliability of these simulations for forecasting applications remains unquantified. The ability of the WRF to simulate nonbanded GSLE features is also unknown. This paper uses subjective, traditional, and object-based verification to evaluate convection-permitting (1.33-km grid spacing) WRF simulations of 11 banded and 8 nonbanded GSLE events. In all simulations, the WRF was configured with the Thompson microphysics and the Yonsei University (YSU) planetary boundary layer parameterizations. Subjectively, a majority of the simulations of banded GSLE events produce physically realistic precipitation features. In contrast, simulations of nonbanded GSLE events rarely produce physically realistic precipitation features and sometimes erroneously produce banded precipitation features. Simulations of banded GSLE events produce equitable threat scores (ETSs) comparable to other convective-storm verification studies, whereas simulations of nonbanded events exhibit lower ETSs. Object-based verification shows that the WRF tends to generate precipitation to the right (relative to the flow) and downstream of observed. These results, although based on a specific WRF parameterization suite, suggest that deterministic prediction of GSLE using convection-permitting models will prove challenging in practice with current numerical models. In addition, identifying and addressing the causes of the rightward and downstream precipitation bias is necessary to achieve optimal performance from future probabilistic and/or deterministic high-resolution forecast systems.

2015 ◽  
Vol 30 (1) ◽  
pp. 136-152 ◽  
Author(s):  
John D. McMillen ◽  
W. James Steenburgh

Abstract Simulations of moist convection at cloud-permitting grid spacings are sensitive to the parameterization of microphysical processes, posing a challenge for operational weather prediction. Here, the Weather Research and Forecasting (WRF) Model is used to examine the sensitivity of simulations of the Great Salt Lake–effect snowstorm of 27 October 2010 to the choice of microphysics parameterization (MP). It is found that the simulated precipitation from four MP schemes varies in areal coverage, amount, and position. The Thompson scheme (THOM) verifies best against radar-derived precipitation estimates and gauge observations. The Goddard, Morrison, and WRF double-moment 6-class microphysics schemes (WDM6) produce more precipitation than THOM, with WDM6 producing the largest overprediction relative to radar-derived precipitation estimates and gauge observations. Analyses of hydrometeor mass tendencies show that WDM6 creates more graupel, less snow, and more total precipitation than the other schemes. These results indicate that the rate of graupel and snow production can strongly influence the precipitation efficiency in simulations of lake-effect storms, but further work is needed to evaluate MP-scheme accuracy across a wider range of events, including the use of aircraft- and ground-based hydrometeor sampling to validate MP hydrometeor categorization.


2016 ◽  
Vol 144 (10) ◽  
pp. 3579-3590 ◽  
Author(s):  
Jihyeon Jang ◽  
Song-You Hong

This study examines the characteristics of a nonhydrostatic dynamical core compared to a corresponding hydrostatic dynamical core in the Regional Model Program (RMP) of the Global/Regional Integrated Model system (GRIMs), a spectral model for regional forecasts, focusing on simulated precipitation over Korea. This kind of comparison is also executed in the Weather Research and Forecasting (WRF) finite-difference model with the same physics package used in the RMP. Overall, it is found that the nonhydrostatic dynamical core experiment accurately reproduces the heavy rainfall near Seoul, South Korea, on a 3-km grid, relative to the results from the hydrostatic dynamical core in both models. However, the characteristics of nonhydrostatic effects on the simulated precipitation differ between the RMP and WRF Model. The RMP with the nonhydrostatic dynamical core improves the local maximum, which is exaggerated in the hydrostatic simulation. The hydrostatic simulation of the WRF Model displaces the major precipitation area toward the mountainous region along the east coast of the peninsula, which is shifted into the observed area in the nonhydrostatic simulation. In the simulation of a summer monsoonal rainfall, these nonhydrostatic effects are negligible in the RMP, but the simulated monsoonal rainfall is still influenced by the dynamical core in the WRF Model even at a 27-km grid spacing. One of the reasons for the smaller dynamical core effect in the RMP seems to be the relatively strong horizontal diffusion, resulting in a smaller grid size of the hydrostatic limit.


2012 ◽  
Vol 27 (4) ◽  
pp. 954-971 ◽  
Author(s):  
Trevor I. Alcott ◽  
W. James Steenburgh ◽  
Neil F. Laird

Abstract This climatology examines the environmental factors controlling the frequency, occurrence, and morphology of Great Salt Lake–effect (GSLE) precipitation events using cool season (16 September–15 May) Weather Surveillance Radar-1988 Doppler (WSR-88D) imagery, radiosonde soundings, and MesoWest surface observations from 1997/98 to 2009/10. During this period, the frequency of GSLE events features considerable interannual variability that is more strongly correlated to large-scale circulation changes than lake-area variations. Events are most frequent in fall and spring, with a minimum in January when the climatological lake surface temperature is lowest. Although forecasters commonly use a 16°C lake–700-hPa temperature difference (ΔT) as a threshold for GSLE occurrence, GSLE was found to occur in winter when ΔT was only 12.4°C. Conversely, GSLE is associated with much higher values of ΔT in the fall and spring. Therefore, a seasonally varying threshold based on a quadratic fit to the monthly minimum ΔT values during GSLE events is more appropriate than a single threshold value. A probabilistic forecast method based on the difference between ΔT and this seasonally varying threshold, 850–700-hPa relative humidity, and 700-hPa wind direction offers substantial improvement over existing methods, although forecast skill is diminished by temperature and moisture errors in operational models. An important consideration for forecasting because of their higher precipitation rates, banded features—with a horizontal aspect ratio of 6:1 or greater—dominate only 20% of the time that GSLE is occurring, while widespread, nonbanded precipitation is much more common. Banded periods are associated with stronger low-level winds and a larger lake–land temperature difference.


2019 ◽  
Vol 34 (5) ◽  
pp. 1343-1363 ◽  
Author(s):  
Ryan Connelly ◽  
Brian A. Colle

Abstract This paper investigates the ability of the Weather Research and Forecasting (WRF) Model in simulating multiple small-scale precipitation bands (multibands) within the extratropical cyclone comma head using four winter storm cases from 2014 to 2017. Using the model output, some physical processes are explored to investigate band prediction. A 40-member WRF ensemble was constructed down to 2-km grid spacing over the Northeast United States using different physics, stochastic physics perturbations, different initial/boundary conditions from the first five perturbed members of the Global Forecast System (GFS) Ensemble Reforecast (GEFSR), and a stochastic kinetic energy backscatter scheme (SKEBS). It was found that 2-km grid spacing is adequate to resolve most snowbands. A feature-based verification is applied to hourly WRF reflectivity fields from each ensemble member and the WSR-88D radar reflectivity at 2-km height above sea level. The Method for Object-Based Diagnostic Evaluation (MODE) tool is used for identifying multibands, which are defined as two or more bands that are 5–20 km in width and that also exhibit a >2:1 aspect ratio. The WRF underpredicts the number of multibands and has a slight eastward position bias. There is no significant difference in frontogenetical forcing, vertical stability, moisture, and vertical shear between the banded versus nonbanded members. Underpredicted band members tend to have slightly stronger frontogenesis than observed, which may be consolidating the bands, but overall there is no clear linkage in ambient condition errors and band errors, thus leaving the source for the band underprediction motivation for future work.


2000 ◽  
Vol 128 (3) ◽  
pp. 709-727 ◽  
Author(s):  
W. James Steenburgh ◽  
Scott F. Halvorson ◽  
Daryl J. Onton

2012 ◽  
Vol 140 (2) ◽  
pp. 664-682 ◽  
Author(s):  
Hyeyum Hailey Shin ◽  
Song-You Hong ◽  
Jimy Dudhia

The lowest model level height z1 is important in atmospheric numerical models, since surface layer similarity is applied to the height in most of the models. This indicates an implicit assumption that z1 is within the surface layer. In this study, impacts of z1 on the performance of planetary boundary layer (PBL) parameterizations are investigated. Three conceptually different schemes in the Weather Research and Forecasting (WRF) model are tested for one complete diurnal cycle: the nonlocal, first-order Yonsei University (YSU) and Asymmetric Convective Model version 2 (ACM2) schemes and the local, 1.5-order Mellor–Yamada–Janjić (MYJ) scheme. Surface variables are sensitive to z1 in daytime when z1 is below 12 m, even though the height is within the surface layer. Meanwhile during nighttime, the variables are systematically altered as z1 becomes shallower from 40 m. PBL structures show the sensitivity in the similar manner, but weaker. The order of sensitivity among the three schemes is YSU, ACM2, and MYJ. The significant sensitivity of the YSU parameterization comes from the PBL height calculation. This is considerably alleviated by excluding the thermal excess term in determining the PBL height when z1 is within the surface layer. The factor that specifies the ratio of nonlocal transport to total mixing is critical to the sensitivity of the ACM2 scheme. The MYJ scheme has no systematic sensitivity, since it is a local scheme. It is also noted that a numerical instability appears accompanying the unrealistic PBL structures when the grid spacing in the surface layer suddenly jumps.


1993 ◽  
Vol 64 (3-4) ◽  
pp. 225-238
Author(s):  
James C. Pechmann ◽  
Walter J. Arabasz ◽  
Ethan D. Brown

Abstract From September 1987 through March 1988, an earthquake sequence which induded shocks of ML 4.8 and 4.7 on September 25 and October 26, respectively, and a total of 8 moderate-sized events of ML ≥ 3.8, occurred in NW Utah beneath a desert basin west of the Great Salt Lake (center of activity: 41° 12.0′ N, 113° 10.5′ W). Wood-Anderson seismograms indicate nearly identical magnitudes for the two largest earthquakes but a factor of two to five larger seismic moment for the first. Significant aspects of the 1987–1988 sequence induded: foreshock activity, proximity (epicentral distance, Δ, of 7 to 12 km) to a major pumping facility completed in early 1987 to lower the level of the Great Salt Lake, an unambiguous strike-slip focal mechanism for the ML 4.8 mainshock, and the lack of a clear association with late Quaternary surface faults. Despite constraints on accessibility to the epicentral area, the stations of the regional seismic network (Δ ≥ 60 km) were supplemented with local stations—initially four portable seismographs and later up to four telemetered stations (2 ≤ Δ ≤ 27 km) that operated continuously from October 7, 1987, through March 1988. Well-located aftershock foci form a 6-by-6-km zone between 6 and 12 km depth which is steeply dipping and trends SSE, parallel to the right-lateral nodal plane of the mainshock focal mechanism. Despite coincidental timing and proximity of the earthquakes to major pumping activity at the surface, the case for induced seismicity related to the pumping is weak.


Weatherwise ◽  
1985 ◽  
Vol 38 (6) ◽  
pp. 309-311
Author(s):  
David M. Carpenter

Sign in / Sign up

Export Citation Format

Share Document