X-Ray Fluorescence Analysis and Self-Organizing Maps Classification of the Etruscan Gold Coin Collection at the Monetiere of Florence

2016 ◽  
Vol 71 (5) ◽  
pp. 817-822 ◽  
Author(s):  
Claudio Arias ◽  
Stefano Bani ◽  
Fiorenzo Catalli ◽  
Giulia Lorenzetti ◽  
Emanuela Grifoni ◽  
...  

The “Monetiere” of Florence hosts the most important collection of Etruscan coins in the world. In the framework of the longstanding collaboration between the Monetiere and the Applied Laser and Spectroscopy Laboratory in Pisa, the Etruscan gold coin collection of the museum was studied. The measurements were performed at the Monetiere, using a portable energy-dispersive X-ray fluorescence (XRF) instrument. The quantitative determination of the gold alloys used for the realization of the coins was obtained applying the fundamental parameters method to the XRF spectra; as a result, using the self-organizing maps method, we were able to classify the coins in four main groups. The main parameter determining the classification is the quantity of silver in the alloy. The results obtained shed some light about the origin of the coins under study.

2020 ◽  
Vol 86 (10) ◽  
pp. 5-9
Author(s):  
D. G. Filatova ◽  
A. A. Arkhipenko ◽  
M. A. Statkus ◽  
V. V. Es’kina ◽  
V. B. Baranovskaya ◽  
...  

An approach to sorptive separation of Se (IV) from solutions on a novel S,N-containing sorbent with subsequent determination of the analyte in the sorbent phase by micro-x-ray fluorescence method is presented. The sorbent copolymethylenesulfide-N-alkyl-methylenamine (CMA) was synthesized using «snake in the cage» procedure and proven to be stable in acid solutions. Conditions for quantitative extraction of Se (IV) were determined: sorption in 5 M HCl or 0.05 M HNO3 solutions when heated to 60°C, phase contact time being 1 h. The residual selenium content in the solution was determined by inductively coupled plasma mass spectrometry (ICP-MS) using 82Se isotope. The absence of selenium losses is proved and the mechanism of sorption interaction under specified conditions is proposed. The method of micro-x-ray fluorescence analysis (micro-RFA) with mapping revealed a uniform distribution of selenium on the sorbent surface. The possibility of determining selenium in the sorbent phase by micro-RFA is shown. When comparing the obtained results with the results of calculations by the method of fundamental parameters, it is shown the necessity of using standard samples of sorbates to obtain correct results of RFA determination of selenium in the sorbent phase.


Author(s):  
Naotake Kamiura ◽  
Ayumu Saitoh ◽  
Teijiro Isokawa ◽  
Nobuyuki Matsui ◽  
Hitoshi Tabuchi

2010 ◽  
Vol 44 (1) ◽  
pp. 24-27 ◽  
Author(s):  
G. A. Bordovsky ◽  
A. V. Marchenko ◽  
P. P. Seregin ◽  
N. N. Smirnova ◽  
E. I. Terukov

2012 ◽  
Vol 117 (D4) ◽  
pp. n/a-n/a ◽  
Author(s):  
Anders A. Jensen ◽  
Anne M. Thompson ◽  
F. J. Schmidlin

2021 ◽  
pp. 124-131
Author(s):  
A.V. Alekseev ◽  
◽  
G.V. Orlov ◽  
P.S. Petrov ◽  
A.V. Slavin ◽  
...  

The determination of the elements Cu, Ni, Sb, Bi, Pb, Zn and Fe in the tin-based solder VPr35, as well as the elements Sn, Ni, Sb, Bi and In in the lead-based VPr40 solder by the method of х-ray fluorescence spectroscopy has been carried out. The calibration dependences are corrected taking into account the superposition of signals from interfering elements on the analytical signal and changes in intensity caused by inter-element influences in the matrix. The analysis was carried out by the method of fundamental parameters without using standard samples. The correctness of the results obtained was confirmed by their comparative analysis by atomic emission spectroscopy and high-resolution mass spectrometry with a glow discharge.


Sign in / Sign up

Export Citation Format

Share Document