Prefrontal Hemodynamics of Physical Activity and Environmental Complexity During Cognitive Work

Author(s):  
Ryan McKendrick ◽  
Ranjana Mehta ◽  
Hasan Ayaz ◽  
Melissa Scheldrup ◽  
Raja Parasuraman

Objective: The aim of this study was to assess performance and cognitive states during cognitive work in the presence of physical work and in natural settings. Background: Authors of previous studies have examined the interaction between cognitive and physical work, finding performance decrements in working memory. Neuroimaging has revealed increases and decreases in prefrontal oxygenated hemoglobin during the interaction of cognitive and physical work. The effect of environment on cognitive-physical dual tasking has not been previously considered. Method: Thirteen participants were monitored with wireless functional near-infrared spectroscopy (fNIRS) as they performed an auditory 1-back task while sitting, walking indoors, and walking outdoors. Results: Relative to sitting and walking indoors, auditory working memory performance declined when participants were walking outdoors. Sitting during the auditory 1-back task increased oxygenated hemoglobin and decreased deoxygenated hemoglobin in bilateral prefrontal cortex. Walking reduced the total hemoglobin available to bilateral prefrontal cortex. An increase in environmental complexity reduced oxygenated hemoglobin and increased deoxygenated hemoglobin in bilateral prefrontal cortex. Conclusion: Wireless fNIRS is capable of monitoring cognitive states in naturalistic environments. Selective attention and physical work compete with executive processing. During executive processing loading of selective attention and physical work results in deactivation of bilateral prefrontal cortex and degraded working memory performance, indicating that physical work and concomitant selective attention may supersede executive processing in the distribution of mental resources. Application: This research informs decision-making procedures in work where working memory, physical activity, and attention interact. Where working memory is paramount, precautions should be taken to eliminate competition from physical work and selective attention.

2020 ◽  
Vol 2 (1) ◽  
pp. 40-56
Author(s):  
Maximilian A. Friehs ◽  
Christian Frings

AbstractThe effect of stress on working memory has been traced back to a modulation of the prefrontal cortex (PFC). We investigated the effects of neuromodulation of the left dorsolateral prefrontal cortex (lDLPFC) after exposure to psychosocial stress through the Socially Evaluated Cold Pressure Test (SECPT). The hypothesis was that neuromodulation interacts with the stress intervention, to either boost performance even under stressed conditions or compensate negative stress effects. Fifty-nine participants were randomly divided into two groups. One group received active, anodal, offline transcranial direct current stimulation (tDCS) over the lDLPFC while the other group received sham stimulation. Participants performed a lexical n-back task, before and after the SECPT and tDCS intervention. The first n-back task was used as a baseline measurement and the second n-back task was performed during recovery from stress when cortisol levels are at their peak, but still under the influence of tDCS aftereffects. Additionally, after the psychosocial stress phase participants were post-hoc divided into cortisol responders and nonresponders. Results showed that generally stress increased lexical n-back task performance as indicated by faster correct reaction times and higher accuracy but that this was not modulated by tDCS. Crucially, using Bayes analysis we obtained evidence against the influence of anodal tDCS on stressed individual’s working memory performance.


Author(s):  
Veronica Claire Galvin ◽  
ShengTao Yang ◽  
Constantinos D. Paspalas ◽  
Yang Yang ◽  
Lu E. Jin ◽  
...  

Neuron ◽  
2020 ◽  
Vol 106 (4) ◽  
pp. 649-661.e4 ◽  
Author(s):  
Veronica C. Galvin ◽  
Sheng Tao Yang ◽  
Constantinos D. Paspalas ◽  
Yang Yang ◽  
Lu E. Jin ◽  
...  

2010 ◽  
Vol 22 (6) ◽  
pp. 1224-1234 ◽  
Author(s):  
Aaron M. Rutman ◽  
Wesley C. Clapp ◽  
James Z. Chadick ◽  
Adam Gazzaley

Selective attention confers a behavioral benefit on both perceptual and working memory (WM) performance, often attributed to top–down modulation of sensory neural processing. However, the direct relationship between early activity modulation in sensory cortices during selective encoding and subsequent WM performance has not been established. To explore the influence of selective attention on WM recognition, we used electroencephalography to study the temporal dynamics of top–down modulation in a selective, delayed-recognition paradigm. Participants were presented with overlapped, “double-exposed” images of faces and natural scenes, and were instructed to either remember the face or the scene while simultaneously ignoring the other stimulus. Here, we present evidence that the degree to which participants modulate the early P100 (97–129 msec) event-related potential during selective stimulus encoding significantly correlates with their subsequent WM recognition. These results contribute to our evolving understanding of the mechanistic overlap between attention and memory.


2011 ◽  
Vol 2 ◽  
Author(s):  
Nele Wild-Wall ◽  
Michael Falkenstein ◽  
Patrick D. Gajewski

Sign in / Sign up

Export Citation Format

Share Document