Sevoflurane reduced functional connectivity of excitatory neurons in prefrontal cortex during working memory performance of aged rats

2018 ◽  
Vol 106 ◽  
pp. 1258-1266 ◽  
Author(s):  
Xinyu Xu ◽  
Xin Tian ◽  
Guolin Wang
2020 ◽  
Vol 30 (8) ◽  
pp. 4297-4305 ◽  
Author(s):  
Xia Liang ◽  
Li-Ming Hsu ◽  
Hanbing Lu ◽  
Jessica A Ash ◽  
Peter R Rapp ◽  
...  

Abstract The CA3 and CA1 principal cell fields of the hippocampus are vulnerable to aging, and age-related dysfunction in CA3 may be an early seed event closely linked to individual differences in memory decline. However, whether the differential vulnerability of CA3 and CA1 is associated with broader disruption in network-level functional interactions in relation to age-related memory impairment, and more specifically, whether CA3 dysconnectivity contributes to the effects of aging via CA1 network connectivity, has been difficult to test. Here, using resting-state fMRI in a group of aged rats uncontaminated by neurodegenerative disease, aged rats displayed widespread reductions in functional connectivity of CA3 and CA1 fields. Age-related memory deficits were predicted by connectivity between left CA3 and hippocampal circuitry along with connectivity between left CA1 and infralimbic prefrontal cortex. Notably, the effects of CA3 connectivity on memory performance were mediated by CA1 connectivity with prefrontal cortex. We additionally found that spatial learning and memory were associated with functional connectivity changes lateralized to the left CA3 and CA1 divisions. These results provide novel evidence that network-level dysfunction involving interactions of CA3 with CA1 is an early marker of poor cognitive outcome in aging.


Author(s):  
Veronica Claire Galvin ◽  
ShengTao Yang ◽  
Constantinos D. Paspalas ◽  
Yang Yang ◽  
Lu E. Jin ◽  
...  

Author(s):  
Ryan McKendrick ◽  
Ranjana Mehta ◽  
Hasan Ayaz ◽  
Melissa Scheldrup ◽  
Raja Parasuraman

Objective: The aim of this study was to assess performance and cognitive states during cognitive work in the presence of physical work and in natural settings. Background: Authors of previous studies have examined the interaction between cognitive and physical work, finding performance decrements in working memory. Neuroimaging has revealed increases and decreases in prefrontal oxygenated hemoglobin during the interaction of cognitive and physical work. The effect of environment on cognitive-physical dual tasking has not been previously considered. Method: Thirteen participants were monitored with wireless functional near-infrared spectroscopy (fNIRS) as they performed an auditory 1-back task while sitting, walking indoors, and walking outdoors. Results: Relative to sitting and walking indoors, auditory working memory performance declined when participants were walking outdoors. Sitting during the auditory 1-back task increased oxygenated hemoglobin and decreased deoxygenated hemoglobin in bilateral prefrontal cortex. Walking reduced the total hemoglobin available to bilateral prefrontal cortex. An increase in environmental complexity reduced oxygenated hemoglobin and increased deoxygenated hemoglobin in bilateral prefrontal cortex. Conclusion: Wireless fNIRS is capable of monitoring cognitive states in naturalistic environments. Selective attention and physical work compete with executive processing. During executive processing loading of selective attention and physical work results in deactivation of bilateral prefrontal cortex and degraded working memory performance, indicating that physical work and concomitant selective attention may supersede executive processing in the distribution of mental resources. Application: This research informs decision-making procedures in work where working memory, physical activity, and attention interact. Where working memory is paramount, precautions should be taken to eliminate competition from physical work and selective attention.


Neuron ◽  
2020 ◽  
Vol 106 (4) ◽  
pp. 649-661.e4 ◽  
Author(s):  
Veronica C. Galvin ◽  
Sheng Tao Yang ◽  
Constantinos D. Paspalas ◽  
Yang Yang ◽  
Lu E. Jin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document