Identification and Control of Shape Memory Alloys

2013 ◽  
Vol 46 (8) ◽  
pp. 252-256 ◽  
Author(s):  
Z Ghasemi ◽  
R Nadafi ◽  
M Kabganian ◽  
R Abiri
2008 ◽  
Vol 20 (5) ◽  
pp. 793-800 ◽  
Author(s):  
Mami Nishida ◽  
◽  
Hua O. Wang ◽  
Kazuo Tanaka ◽  

This paper presents a study on the development and control of a small biped walking robot using shape memory alloys (SMAs). We propose a flexible flat plate (FFP) consisting of a polyethylene plate and SMAs. Based on a detailed investigation of the properties of the SMA-based FFP structure, we develop a lightweight small walking robot incorporating multiple SMA-based FFPs. The walking robot has four degrees of freedom and is controlled by switching the ON-OFF current signals to the SMA-based FFPs. The switching timing, central to the control strategy to achieve walking behavior, is determined through experiments. The small robot realizes biped walking by transferring the elastic potential energy (generated by deflections of the SMA-based FFPs) to kinematic energy. The resulting small biped walking robot weighs a mere 2.8 g (with a height of 70 mm). Our experimental results demonstrate the viability and utility of the small walking robot with the proposed SMA-based FFPs and the control strategy to achieve walking behavior.


Author(s):  
Max Kaiser ◽  
Nils Neblung ◽  
Martin Gurka

Abstract In this paper we present the development, implementation and testing of a compact system for diagnosis and control of actuators based on metallic shape memory alloys (SMA). Using NiTi-SMA, very compact, cost-effective and lightweight actuation systems can be realized. In applications where the SMA is activated by internal Joule heating or its condition is diagnosed by the self-sensing of its electrical resistance, an electrical system capable of reliably measuring very small resistance changes (< 1 ohm) without affecting the phase-state of the SMA is required. In addition, the system must offer the possibility to evaluate the nonlinear, hysteresis-afflicted behavior of the SMA and to handle this difficulty, e.g. utilizing a model-based control. This paper presents a simple compact and adaptive system based on a microcontroller that meets these requirements. Detailed functional tests were carried out with the system to establish a correlation between the change in electrical resistance in the range < 200 mOhm and the current strain state of the actuator. For this purpose, a first series of tests was performed, with the SMA wires working against a constant load. In a second tests series, the SMA wires worked against springs of different stiffness. The use of a microcontroller enables simple implementation of different control strategies. The control system for the non-linear resistance change utilizes a fuzzy logic which divides the control algorithm into three regimes. In the regime of the martensitic phase transformation a PI-controller is used. The state of actuators with an absolute electrical resistance < 1 Ohm and a resistance change < 200 mohm associated with the phase transformation can be precisely measured and controlled with an accuracy < 10 mohm. The system can be configured with little effort for different tasks and shape memory systems of different sizes. Furthermore, it is possible to implement more complex control algorithms up to model-based controllers.


Author(s):  
Petr Sedlák ◽  
Miroslav Frost ◽  
Alena Kruisová ◽  
Petr Šittner ◽  
Luděk Heller

Actuators in the form of a helical spring made from shape memory alloy are attractive due to light weight, large recoverable deformation, high energy density and manufacturing simplicity. For their optimal design and control detailed information on evolution of phase and stress distribution within the material during operation is advantageous. In this work a constitutive model tailored for non-proportionally loaded shape memory alloys exhibiting R-phase transition, transformation strain anisotropy, tension-compression asymmetry is employed to reveal and interpret relation between macroscopic response of such an actuator and microscopic state within the shape memory material. Numerical simulations confirm good predictive capability of the model and demonstrate that because of naturally non-proportional loading mode, phase and stress distributions within cross-section of the wire may be rather complex and counterintuitive.


Sign in / Sign up

Export Citation Format

Share Document