Dynamic Response of Smart Hybrid Composite Plate Subjected to Low-Velocity Impact

2007 ◽  
Vol 41 (19) ◽  
pp. 2347-2370 ◽  
Author(s):  
S.M.R. Khalili ◽  
A. Shokuhfar ◽  
F. Ashenai Ghasemi ◽  
K. Malekzadeh
2014 ◽  
Vol 575 ◽  
pp. 473-476
Author(s):  
Yu Liang Chen ◽  
Hung Wen Chen ◽  
Ying Chih Lin

This paper presents the analysis of smart hybrid composite plate with embedded shape memory alloy (SMA) wires subjected to low-velocity impact. The SMA wires were embedded within the layers of the composite laminates and the numerical calculation was used in the impact analyses of the laminated hybrid composite plate. The laminated plate theory, first-order shear deformation theory and minimal potential energy principle was utilized to solve the governing equations of the hybrid composite plate analytically. Energy absorption of hybrid composites can be successfully analyzed using analysis of variance (ANOVA). The results indicated that temperature effect is significant during the transition phase and SMA can effectively improve impact-resistance of the hybrid composite laminated plate. In addition, this hybrid structure is an advanced design concepts that can strengthen the impact resistance capability and enhance the carrying loading efficiency of the structure.


2016 ◽  
Vol 32 (5) ◽  
pp. 565-577
Author(s):  
Y.-C. Lin ◽  
Y.-L. Chen ◽  
H.-W. Chen

AbstractIn the paper, the influence of shape memory alloy (SMA) by varying the parameters such as volume fraction, orientation, and temperature on the hybrid-SMA composite laminate subjected to low-velocity impact is studied. A theoretical model for the composite laminated plate bonded with SMA reinforced layers is presented. The constitutive relation of the SMA layer is obtained by using the method of micromechanics. The governing relations obtained can be used for theoretical predications of thermomechanical properties of SMA plies in this paper. The analytical expressions for the hybrid SMA composite plate are derived based on Tanaka's constitutive equation and linear phase transformation kinetics presented by Liang and Rogers.The laminated plate theory, first-order shear deformation theory and minimal potential energy principle is utilized to solve the governing equations of the hybrid composite plate and calculate the absorbed energies including tensile, shear and bending.An orthogonal array and analysis of variance is employed to investigate the influence of the mentioned parameters on the energy absorption of the hybrid laminated plate. The results showed that the effects of the phase transformation temperature are more significant than the effects of the volume fraction and orientation of SMA on structural energy absorption.


2018 ◽  
Vol 28 (3) ◽  
pp. 271-285 ◽  
Author(s):  
Furqan Ahmad ◽  
Fethi Abbassi ◽  
Myung Kyun Park ◽  
Jae-Wook Jung ◽  
Jung-Wuk Hong

Sign in / Sign up

Export Citation Format

Share Document