Investigation on the effect of drilling parameters on the tool wear and delamination of glass fibre-reinforced polymer composite using vibration signal analysis

2017 ◽  
Vol 52 (12) ◽  
pp. 1641-1648 ◽  
Author(s):  
M Prakash ◽  
PVS Dileep Aditya Dhar

Glass fibre-reinforced polymer composite materials are widely used in industrial, aerospace and automotive sector. It has excellent properties such as high strength to weight ratio, higher fatigue limit, high stiffness to weight ratio, corrosion resistance and design flexibility. The strength of the composite highly depends upon orientation of the fibre material. Drilling is one of the major machining operations that are carried out on Glass fibre-reinforced polymer composite materials to the need for components assembly. There are many problems encountered while drilling glass fibre-reinforced polymer composites. The major problems are excessive tool wear and delamination of the composite during drilling, which reduce the strength of the composite during application. In the present study, the experimental investigations are carried out to analyse the effect of various machining parameters, i.e. cutting speed and feed rate on the tool wear and delamination. The time and frequency domain analysis of vibration signals measured using sound sensor is also used to predict the effect of machining parameters on delamination as well as to develop the tool replacement strategy.

Data in Brief ◽  
2018 ◽  
Vol 18 ◽  
pp. 1388-1393 ◽  
Author(s):  
Monica J. Emerson ◽  
Vedrana A. Dahl ◽  
Knut Conradsen ◽  
Lars P. Mikkelsen ◽  
Anders B. Dahl

Glass Fiber Reinforced Polymer (GFRP) is one of a relatively new class of composite material. These materials are manufactured from a combination of fibers and resins. These composite materials have proven to be efficient and economical for the development of new structures and the repair of deteriorating structures in civil engineering. One of the important reasons for the use of GFRP composite materials is because of its superior mechanical properties. These mechanical properties includes impact resistance, strength, stiffness, flexibility and also its enhanced ability to carry loads. In construction industry, in order to meet the advanced infrastructure requirements, new innovative technologies and materials are being introduced. Also any new technology or material has its own limitations but to meet the new requirements, new technologies and materials have to be invented and put to use. With structures becoming old and increasing bar corrosion, old buildings have to be retrofitted with additional materials to increase their durability and life. For strengthening and retrofitting of concrete structures confinement with FRP has various applications. In this project concrete specimens are wrapped with glass fibre reinforced polymers to study the effect of confinement in the strength of specimens. For wrapping bi-directional and uni-directional glass fibre reinforced polymer mats are used. During the uni-directional glass fibre reinforced polymer wrapping, it is wrapped in both horizontal and vertical directions. The fiber used in this paper is bi-directional fibre. To find the effect of wrapping, specimens are wrapped in one rotation and two rotations.


Sign in / Sign up

Export Citation Format

Share Document