mechanical stirring
Recently Published Documents


TOTAL DOCUMENTS

360
(FIVE YEARS 111)

H-INDEX

21
(FIVE YEARS 4)

Author(s):  
Sonia M. Tikoo ◽  
Alexander J. Evans

Dynamo magnetic fields are primarily generated by thermochemical convection of electrically conductive liquid metal within planetary cores. Convection can be sustained by secular cooling and may be bolstered by compositional buoyancy associated with core solidification. Additionally, mechanical stirring of core fluids and external perturbations by large impact events, tidal effects, and orbital precession can also contribute to sustaining dynamo fields. Convective dynamos cease when the core-mantle heat flux becomes subadiabatic or if specific crystallization regimes inhibit core fluid flows. Therefore, exploring the histories of magnetic fields across the Solar System provides a window into the thermal and chemical evolution of planetary interiors. Here we review how recent spacecraft-based studies of remanent crustal magnetism, paleomagnetic studies of rock samples, and planetary interior models have revealed the magnetic and evolutionary histories of Mercury, Earth, Mars, the Moon, and several planetesimals, as well as discuss avenues for future exploration and discovery. ▪ Paleomagnetism and remanent crustal magnetism studies elucidate the magnetic histories of rocky planetary bodies. ▪ Records of ancient dynamo fields have been obtained from 3 out of 4 terrestrial planets, the Moon, and several planetesimals. ▪ The geometries, intensities, and longevities of dynamo fields can provide information on core processes and planetary thermal evolution. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 50 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Author(s):  
Chakradhar V.P. Komanduri

Montmorillonite (MMT) clay was disseminated into Unsaturated Polyester (UP) and Epoxy blend systems in diverse weight ratios namely, 0, 1, 2, 3, and 5% to prepare Epoxy/UP/MMT clay composite. The specimen was characterized by thermal and chemical analysis. Homogeneous mixture of blended composites is obtained through mechanical stirring and ultrasonication processes. The testing of thermal and chemical properties was performed. Evidence acquired from the above tests indicate that Epoxy reinforced with UP and further strengthened with MMT clay enhanced the thermal and chemical properties of the composite to a considerable extent. The purpose of this study was to recognize an appropriate composite offering a stronger material with enhanced performance; that is suitable for diverse industrial uses.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Supanut Phattarateera ◽  
Rudeerat Ausab ◽  
Neungruthai Jemkuntod ◽  
Atiwat Wiriya-amornchai

Abstract Composites of a biodegradable thermoplastic aliphatic polyester, polybutylene succinate (PBS), with bentonite were investigated for morphological and mechanical properties. The bentonite was modified with soybean oil (SBO) and lard oil (LO) (2:98 clay:oil % by weight) by mechanical stirring and ultrasonication. The PBS/modified bentonite composite was prepared by using an internal mixer and processed by compression molding. Under bentonite modification conditions, XRD and SEM showed that the bentonite layers were broken into small layers, and the d-spacing between the layers was increased by edible oil molecules. A small plate like structure of modified bentonite composite was observed by SEM micrograph, which revealed short and long layer silicate structure non-directionally throughout the matrix phase. The mechanical properties of PBS were reinforced by this structure. The tensile modulus and elongation at break seem to depend on its directional bentonite. Interestingly, considerable improvement in impact strength was observed at over 2 wt% of clay. The impact strengths of PBS, PBS/modified BTN with SBO composite, and PBS/modified BTN with LO composite were increased from 1 to 1.5 and 2 kJ/m2, respectively. Comparatively, using LO modified bentonite had a better performance for increased interlayer and resulted in higher impact strength of the composite than that of SBO composite. The results demonstrated that PBS/modified bentonite using edible oil could be a potential alternative low cost, eco-friendly material with superior impact properties useful for further applications.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
N. Saravanan ◽  
V. Yamunadevi ◽  
V. Mohanavel ◽  
V. Kumar Chinnaiyan ◽  
Murugesan Bharani ◽  
...  

The nanoparticles are incorporated into the composite to mark their unique properties. This work investigates the hybrid epoxy nanocomposite and the impact of nanographite reinforcement. The composite was prepared by using a mechanical stirring technique. The amount of nanographite was added in different volumes, i.e., 1.0, 1.5, and 2.0 wt.%. Results of mechanical and dynamic loading properties were analyzed in accordance to the quantity of nano-G. The fiber and matrix interfacial bonding enrichments were evident in high-resolution SEM images-tensile fracture surface. Finally, the optimum content of nanoparticle which impacts the sample greatly was found to be 1.5 wt.%.


Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1800
Author(s):  
María Fernanda Montenegro-Landívar ◽  
Paulina Tapia-Quirós ◽  
Xanel Vecino ◽  
Mònica Reig ◽  
César Valderrama ◽  
...  

Phenolic compounds recovery by mechanical stirring extraction (MSE) was studied from orange and spinach wastes using water as a solvent. The statistical analysis showed that the highest total polyphenol content (TPC) yield was obtained using 15 min, 70 °C, 1:100 (w/v) solid/solvent ratio and pH 4 for orange; and 5 min, 50 °C, 1:50 (w/v) solid/solvent ratio and pH 6 for spinach. Under these conditions, the TPC was 1 mg gallic acid equivalent (GAE) g−1 fresh weight (fw) and 0.8 mg GAE g−1 fw for orange and spinach, respectively. MSE substantially increased the phenolic compounds yields (1-fold for orange and 2-fold for spinach) compared with ultrasound-assisted extraction. Furthermore, the antioxidant activity of orange and spinach extracts was evaluated using DPPH, FRAP and ABTS. The obtained results pointed out that the evaluated orange and spinach residues provided extracts with antioxidant activity (2.27 mg TE g−1 and 0.04 mg TE g−1, respectively).


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Nady ElSayed ◽  
Mohamed M. El-Rabiei ◽  
Mosaad Negem

Abstract Electroplated protective thin film is highly promising materials for advanced applications such as high corrosion resistance and energy conversion and storage. This work is to investigate the effect of Co content and TiO2 on the corrosion resistance of Ni–xCo–yTiO2 nanocomposites in alkaline media. The nanocrystalline Ni–xCo–yTiO2 composites were electroplated using the sulfate-gluconate bath containing the suspended TiO2 nanograins under ultrasound waves and mechanical stirring. The microstructure and corrosion behavior of the electroplated Ni–xCo–yTiO2 nanocomposites have been investigated via X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The XRD pattern of the electroplated Ni–Co matrices with 1–75% of cobalt arranged in face-centered cubic (FCC) system, while the electroplated Ni–Co matrices of further Co% more than 76% converted to hexagonal closed-package (HCP) crystal system. The surface of the Ni–xCo–yTiO2 nanocomposites after immersion in 1.0 M KOH electrolytes was investigated via SEM, atomic force microscopy and EDX. The results displayed that the rate of corrosion of the different composites decreased by combining Ni, Co and the inclusion of TiO2. The improved corrosion resistance of Ni–47Co–3.77TiO2 composites is due to the formation of Ni/Co oxy/hydroxide layer and rebelling effect of OH− by TiO2 sites, which reduces the attacking effect of OH−, O2, and H2O, and notably retards the overall corrosion processes.


2021 ◽  
Vol 4 (2) ◽  
pp. 17-22
Author(s):  
G. І. Zozulia ◽  
◽  
R. V. Mnykh ◽  
О. І. Kuntyi ◽  
А. S. Lapa ◽  
...  

Sonogalvanic replacement and galvanic replacement synthesis of silver nanoparticles (AgNPs) by magnesium scrap in sodium polyacrylate solutions were studied. It was found that during these processes in NaPA solutions silver is practically not deposited on the magnesium surface. Sodium polyacrylate provides stabilization of AgNPs with the formation of yellow solutions with maximum absorption of ~415 nm. It is shown that sonogalvanic replacement synthesis of AgNPs occurs due to the simultaneous course of galvanic replacement by magnesium and sonoreduction of Ag (I) by radicals and reducing agents. The rate of sonogalvanic replacement synthesis of AgNPs is 20-30% higher compared to galvanic substitution by mechanical stirring.


2021 ◽  
Vol 2080 (1) ◽  
pp. 012031
Author(s):  
Ismail Ibrahim ◽  
Azlin Fazlina Osman ◽  
Sinar Arzuria Adnan ◽  
Lai Di Sheng ◽  
Nazrul Haq

Abstract Development of bio-based polymers can reduce human dependence on fossil fuel and move to a sustainable material resource. In this work, thermoplastics starch (TPS) films were produced by plasticization process, in which the crystalline structure of the starch granules was destroyed and reformed by water and glycerine through mechanical stirring and heating process. Hectorite was employed as filler to reinforce the TPS films. The hectorite was subjected to ultrasonication process for reducing the size and aggregation of particles. The ultrasonicated hectorite was added into the TPS solution to produce the TPS/hectorite bio-composite by film casting method. The TPS films with hectorite loading in the range of 1% to 5% were prepared. The morphology, tear strength and soil biodegradability of the TPS/hectorite bio-composite films were studied by altering the loading of hectorite incorporated into the TPS films. Results showed that the TPS/hectorite bio-composite films have higher tear strength compared to the pure TPS films. The tear strength of the bio-composite films slightly increased with hectorite content 1% and 2%. However, as the filler loading increased to 3%, there was a drastic increase of the tear strength. The maximum tear strength value was achieved by the TPS film when 4% hectorite filler was employed. The TPS/4% hectorite (ultrasonicated) has the lowest rate of soil biodegradation due to its lower moisture uptake and greatest interface interaction between starch and hectorite, inhibiting diffusion of bacteria into the films.


Sign in / Sign up

Export Citation Format

Share Document