Eugenol: Some Pharmacologic Observations

1971 ◽  
Vol 50 (6) ◽  
pp. 1531-1535 ◽  
Author(s):  
Frank D. Sticht ◽  
Roy M. Smith

Eugenol introduced directly into the circulatory system of the dog caused a strong but transient reduction in arterial blood pressure and myocardial contractile force, without appreciably changing heart rate or electric activity. Intra-arterial injection of the drug resulted in increased blood flow to the region.

1979 ◽  
Vol 161 (3) ◽  
pp. 332-336 ◽  
Author(s):  
J. J. L. Lertora ◽  
D. Glock ◽  
G. P. Stec ◽  
A. J. Atkinson ◽  
L. I. Goldberg

1991 ◽  
Vol 81 (6) ◽  
pp. 727-732 ◽  
Author(s):  
Marohito Murakami ◽  
Hiromichi Suzuki ◽  
Atsuhiro Ichihara ◽  
Mareo Naitoh ◽  
Hidetomo Nakamoto ◽  
...  

1. The effects of l-arginine on systemic and renal haemodynamics were investigated in conscious dogs. l-Arginine was administered intravenously at doses of 15 and 75 μmol min−1 kg−1 for 20 min. 2. Mean arterial blood pressure, heart rate and cardiac output were not changed significantly by l-arginine infusion. However, l-arginine infusion induced a significant elevation of renal blood flow from 50 ± 3 to 94 ± 12 ml/min (means ± sem, P < 0.01). 3. Simultaneous infusion of NG-monomethyl-l-arginine (0.5 μmol min−1 kg−1) significantly inhibited the increase in renal blood flow produced by l-arginine (15 μmol min−1 kg−1) without significant changes in mean arterial blood pressure or heart rate. 4. Pretreatment with atropine completely inhibited the l-arginine-induced increase in renal blood flow, whereas pretreatment with indomethacin attenuated it (63 ± 4 versus 82 ± 10 ml/min, P < 0.05). 5. A continuous infusion of l-arginine increased renal blood flow in the intact kidney (55 ± 3 versus 85 ± 9 ml/min, P < 0.05), but not in the contralateral denervated kidney (58 ± 3 versus 56 ± 4 ml/min, P > 0.05). 6. These results suggest that intravenously administered l-arginine produces an elevation of renal blood flow, which may be mediated by facilitation of endogenous acetylcholine-induced release of endothelium-derived relaxing factor and vasodilatory prostaglandins.


1964 ◽  
Vol 207 (3) ◽  
pp. 634-640 ◽  
Author(s):  
Emmett S. Manley ◽  
Clinton B. Nash ◽  
R. A. Woodbury

Dogs under pentobarbital anesthesia were employed in an investigation of the effect of abrupt, severe hypercapnia upon blood pressure, heart rate, and force of myocardial contraction. Electrocardiographic activity and arterial blood pH were also monitored. Hypercapnia was induced for 10-min periods with 15 and 30% CO2 in oxygen. The studies were undertaken in nontreated animals and animals treated with atropine, reserpine, chlorisondamine, P-286, or bilateral adrenalectomy. Severe hypercapnia was shown to be depressant to the cardiovascular parameters evaluated, but blood pressure and contractile force normally demonstrated compensation to this depression. Parasympathetic blockade with atropine did not reduce the depression observed in the nontreated dogs during hypercapnia. Results obtained with other pretreated animals indicate that compensation occurs primarily via sympathetic activation. Adrenal activation may assume importance in compensation to 30% CO2, but intact adrenals were not necessary for survival during hypercapnia. No arrhythmias (excluding bradycardia) were observed during or immediately following exposure to either concentration of CO2.


1977 ◽  
Vol 233 (4) ◽  
pp. H438-H443 ◽  
Author(s):  
C. E. Jones ◽  
J. X. Thomas ◽  
M. D. Devous ◽  
C. P. Norris ◽  
E. E. Smith

Effects of inosine on left ventricular contractile force, circumflex blood flow, heart rate, and arterial pressure were investigated in mongrel dogs. Infusion of 50 ml of 10, 25, or 50 mM inosine into the right atrium over 5 min produced arterial blood inosine concentrations of 20-120 microM. Infusion of inosine concentrations of 10 mM or greater produced statistically significant increases in contractile force and circumflex blood flow (P less than 0.05). The increases in contractile force and circumflex blood flow caused by 50 inosine were approximately 40% and 110%, respectively. No statistically significant increases in heart rate or arterial pressure were observed during infusion of inosine at any concentration. Administration of propranolol (2 mg/kg) in no way altered the effects of inosine on contractile force or circumflex blood flow. Thus, the present study suggests that inosine in concentrations which may be produced in the myocardium during stressful conditions causes a substantial effect on the inotropic state of the heart and that the effects of inosine are not mediated through adrenergic mechanisms.


1998 ◽  
Vol 85 (4) ◽  
pp. 1285-1291 ◽  
Author(s):  
Sandrine H. Launois ◽  
Joseph H. Abraham ◽  
J. Woodrow Weiss ◽  
Debra A. Kirby

Patients with obstructive sleep apnea experience marked cardiovascular changes with apnea termination. Based on this observation, we hypothesized that sudden sleep disruption is accompanied by a specific, patterned hemodynamic response, similar to the cardiovascular defense reaction. To test this hypothesis, we recorded mean arterial blood pressure, heart rate, iliac blood flow and vascular resistance, and renal blood flow and vascular resistance in five pigs instrumented with chronic sleep electrodes. Cardiovascular parameters were recorded during quiet wakefulness, during non-rapid-eye-movement and rapid-eye-movement sleep, and during spontaneous and induced arousals. Iliac vasodilation (iliac vascular resistance decreased by −29.6 ± 4.1% of baseline) associated with renal vasoconstriction (renal vascular resistance increased by 10.3 ± 4.0%), tachycardia (heart rate increase: +23.8 ± 3.1%), and minimal changes in mean arterial blood pressure were the most common pattern of arousal response, but other hemodynamic patterns were observed. Similar findings were obtained in rapid-eye-movement sleep and for acoustic and tactile arousals. In conclusion, spontaneous and induced arousals from sleep may be associated with simultaneous visceral vasoconstriction and hindlimb vasodilation, but the response is variable.


1993 ◽  
Vol 265 (6) ◽  
pp. R1458-R1468 ◽  
Author(s):  
O. A. Smith ◽  
C. A. Astley ◽  
F. A. Spelman ◽  
E. V. Golanov ◽  
V. G. Chalyan ◽  
...  

Heart rate, arterial blood pressure, and renal and mesenteric or femoral blood flow were telemetered from 11 Papio hamadryas in an untethered free-ranging situation. The animals' behavior was recorded on videotape, and the cardiovascular (CV) data were recorded on the audio channels of the tape. The behavior was coded, and the codes were linked to the CV data via a time-code generator and computer control. The CV data were digitized into 1-s intervals, and the static relations between CV measures and the postures/locomotions (P/Ls) associated with the behavior were analyzed. The total frequency distributions for heart rate, blood pressure, and renal conductance approximated Gaussian distributions, whereas femoral conductance was positively skewed. The distribution for renal conductance suggested that during normal waking conditions the kidney is not maximally dilated and may increase or decrease its blood flow. All distributions were highly influenced by the Sit category, which occupied 80% of the total time. The CV measures for all P/Ls had wide ranges, and the CV values associated with each P/L overlapped those for the other P/Ls. The heart rate and renal conductance associated with the various P/Ls showed the largest deviations from the grand means and therefore contributed the most to the ability to discriminate one P/L from another. Blood pressure varied little from one P/L to another. The patterns of CV variables served to distinguish particular P/Ls very effectively. The frequency distributions were separated best when they were parceled on the basis of the intensity of behavior associated with a particular P/L. These variations in intensity were the major cause of the overlaps in the frequency distributions associated with P/Ls.


Sign in / Sign up

Export Citation Format

Share Document