Numerical simulation of electrohydrodynamics of a compound drop based on the ternary phase field method

2019 ◽  
Vol 103 (1) ◽  
pp. 003685041988647
Author(s):  
Yu Su ◽  
Tong Yu ◽  
Guicheng Wang ◽  
Chunyan Zhang ◽  
Zhiqiang Liu

Analytical and numerical methods are often used to study the behavior of multiphase fluid under electric field. Compared with analytical methods, numerical methods can simulate the real physical phenomenon of multiphase fluid dynamics in a large deformation range. The finite element method is mainly applied in two-phase fluid currently, although it can be used to analyze the small and large deformation of multiphase fluid under electric field. This article attempts to develop a finite element model of a concentric compound drop immersed in continuous medium under electric field based on the ternary phase field method and simulate the electrohydrodynamics of the compound drop whose core phase, shell phase, and continuous phase are different. The small deformation simulation results of the compound drop under weak electric field are compared with the analytical results of previous researchers from the three aspects, namely, deformation, free charge distribution, and flow pattern. This model is proved to be effective under certain conditions. Based on this premise, the large deformation and breakup of the compound drop under high electric field are further simulated to investigate the mechanism of compound drop breakup preliminarily.

Author(s):  
Subramanya Sadasiva ◽  
Ganesh Subbarayan

Diffusion is an important mechanism for failure inducing phenomena in many applications. The common Pb-free solder alloys used in the current generation of electronics packages are complex multiphase multicomponent materials. As the scale of the solder joint decreases, it becomes increasingly important to account for the effect of surface phenomena such as grain boundary evolution, surface diffusion and interfacial reactions in the mechanics of the solder joints. The dynamics of these diffusion driven interfacial phenomena are affected by the state of stress and the electric current in the solid. The primary challenges to modeling the dynamics of evolution are the tracking of the interface while satisfying the boundary conditions for the bulk problem. In previous work, the authors utilized the phase field method in conjunction with a commercial finite element code to study the effect of stress and electrical fields on the diffusion driven evolution of voids in solder interconnects. The utilization of commercial tools for the simulation of the stress, electrical and thermal fields allowed for the use of pre-existing meshes and allowed the study of electromigration failure in assemblies of solder joints. However, the use of commercial tools can be expensive and the options for parallel simulation are limited, restricting the size and complexity of the simulations. In this work, the authors describe DiffCode, a parallel adaptive finite element code for three-Dimensional simulation of electromigration and stress migration driven failure due to void evolution and growth in solder as well as line interconnects using the phase field method. Several illustrative two-dimensional and three-dimensional electromigration driven void evolution simulations are demonstrated using the code.


2009 ◽  
Vol 131 (7) ◽  
Author(s):  
Zhi Zhu He ◽  
Jing Liu

In this article, the microscale ice crystal growth behavior under electrostatic field is investigated via a phase field method, which also incorporates the effects of anisotropy and thermal noise. The multiple ice nuclei’s competitive growth as disclosed in existing experiments is thus successfully predicted. The present approach suggests a highly efficient theoretical tool for probing into the freeze injury mechanisms of biological material due to ice formation during cryosurgery or cryopreservation process when external electric field was involved.


Author(s):  
Aladurthi L. N. Pramod ◽  
Hirshikesh ◽  
Sundararajan Natarajan ◽  
Ean Tat Ooi

In this paper, an adaptive phase-field scaled boundary finite element method for fracture in functionally graded material (FGM) is presented. The model accounts for spatial variation in the material and fracture properties. The quadtree decomposition is adopted for refinement, and the refinement is based on an error indicator evaluated directly from the solutions of the scaled boundary finite element method. This combination makes it a suitable choice to study fracture using the phase field method, as it reduces the mesh burden. A few standard benchmark numerical examples are solved to demonstrate the improvement in computational efficiency in terms of the number of degrees of freedom.


Sign in / Sign up

Export Citation Format

Share Document